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Overview 

This document details the All of Us Genome Centers (GC) and Data and Research Center 

(DRC) quality control (QC) steps for the genomic data in the research pipeline.  This pipeline 

removes, or flags, samples and variants, in the genomic data, that fail quality thresholds. We 

apply the pipeline before we release the genomic data for research use. We, the All Of Us Data 

and Research Center (DRC), only describe QC processes that are performed analytically (i.e., 

after the sample has been genotyped and sequenced).  All descriptions and results are limited 

to the Beta Release (“Beta”) made available in the Researcher Workbench March 15, 2022, 

which contains 165,208 array samples and 98,622 whole genome sequencing (WGS) samples.  

The samples in the genomic data correspond to the All of Us Curated Data Repository (CDR) 

release C2021Q3R5.  These pipelines are automated unless otherwise noted.  This document 

covers all genomic datatypes made available to researchers at this time including small variants 

(SNPs and Indels) for arrays and short-read whole genome sequencing (WGS). 

 

Audience: This document is intended for researchers using, or considering the use of, 

the genomic data in the Researcher Workbench (RWB).  This document assumes knowledge of 

sequencing, genotype arrays, common genomic data QC approaches, and the variant file 

formats released in All of Us.  We recommend that at a minimum researchers read the Known 

Issues section below, even if they are not as concerned with the QC process. 

 

Notes:   

● Details of the processing (e.g., algorithms) are out of scope for this document. 

● The QC process for extracting and cataloging DNA samples is out of scope for this 

document, since this process happens before genotyping and sequencing. 

● Failed samples are not reported here unless otherwise noted. 

● Raw data and sample lists will be published to the User Support Hub [1] for researchers.  

This document does not contain locations of the data. 

● The genomic data mentioned in this document requires Controlled Tier Access to view.  

To apply for access, please go to https://www.researchallofus.org/ 

Executive Summary 

On March 15, 2022, the All of Us Research Program released the genomic data of 98,622 WGS 

and 165,208 array samples in the Researcher Workbench (RWB) for use by users registered for 

Controlled Tier access.  Variant calls from both WGS and arrays (over 700M WGS SNP and 

indel sites; over 1.4M Array SNP and Indel sites) and auxiliary files (predicted ancestry, 

relatedness/kinship scores, functional annotation, and flagged samples) are available in RWB 

(access required).  Quality control processes, performed both independently and across 

samples, indicate that this data is ready for general analysis.  We suggest researchers, at a 

minimum, read the Known Issues section below before using the data. 

 

https://www.researchallofus.org/


Introduction 

All of Us is collecting biospecimens and generating genomic data for all participants who have 

consented among its target of 1,000,000 participants. As the program continues, the DRC will 

periodically release genomic data - in sync with planned CDR release timelines. This document 

describes the first release of genomic data to All of Us researchers (“Beta Release”) made 

available in the Researcher Workbench on March 15, 2022, which contains 165,208 array 

samples and 98,622 WGS samples, from a diverse set of participants (see Appendix A and 

Appendix K).  All of the released samples with genomic data have at least one other data type 

(e.g., survey data) that can be joined for analysis (see Appendix L).  In this document, we 

describe the quality control processes applied to both the genotyping array (“array”) and whole 

genome sequencing data (WGS).  We describe which processes were performed at the GCs 

and which are at the DRC (see Appendix M), but for most researchers this demarcation has no 

practical significance. 

 

We have split the QC into three conceptual areas: 

1. Consistency -- The uniformity of protocols at each GC that reduce the probability of 

batch effects and that normalize the data across GCs. 

2. Single Sample QC -- QC processes run for each sample independently.  These catch 

major errors, such as sample swaps or sample contamination. 

3. Joint Callset QC (WGS only) -- QC processes executed on the joint callset, which uses 

information across samples to flag samples and filter variants. 

 

We have also performed data validation experiments, such as replicating GWAS results, but the 

results are shown in other, upcoming documentation (see User Support Hub [1] and Tutorial 

Workspaces in RWB, both require access).  

Consistency across Genome Centers 

The genome centers (GCs) established a consistent sample and data processing protocol for 

array and WGS data generation to attenuate the likelihood of batch effects across GCs. 

Descriptions in this document, for both QC and sample processing, apply to all GCs unless 

otherwise noted. 

Arrays 

The GCs generate variant calls (VCFs) that are submitted to the DRC.  The GCs use the same 

lab protocols, scanners, software, and input files: 

● GCs generate raw intensity data (.idat) using the same hardware (iSCAN scanners from 

Illumina) -- These files will still contain biases across GCs. 

● GCs normalize the raw intensity data onto the same scale. This process yields a 

normalization transform for probe intensities, which are one of the inputs for variant calls.  

This transform takes into account variation across GCs.  Each GC will use the derived 

clusters to normalize their idat files and generate variant calls. 



● GCs use identical pipelines to generate VCFs -- This includes both identical pipeline 

versions and input parameters, where applicable.  As a result, the VCFs contain the 

same information, regardless of GC, including metadata about inputs.   

 

See Appendix J for details on the processing of arrays. 

WGS 

The GCs use the same protocol for library construction (PCR Free Kapa HyperPrep), sequencer 

(NovaSeq 6000), software (DRAGEN v3.4.12), and software configuration.  The software 

produces the metrics that are consumed by the sample QC processes.  For more information 

about the sequencing processes used by the GCs, see previous work [2] and the NIH All of Us 

Research Program’s Return of Genetic Results FDA IDE (G200165). 

Single Sample QC 

The processes documented in this section test each sample, independently.  If a sample fails 

this test, then it is excluded from the release and is not reported in this document.  These tests 

detect sample swaps, cross-individual contamination, and sample preparation errors.  In some 

cases, we perform these tests twice, for two reasons: 1) to confirm internal consistency between 

the GCs and the DRC and 2) to mark samples as passing (or failing) QC based on the research 

pipeline criteria.  The single sample QC process accepts a higher contamination rate than the 

clinical pipeline (0.03 for the research pipeline versus 0.01 for the clinical pipeline), but 

otherwise uses identical thresholds.  The list of specific QC processes and an overview of the 

results can be found in Table 1. 

Our WGS single sample QC uses the same sequencing process described previously [2] 

and in the NIH All of Us Research Program’s Return of Genetic Results FDA IDE (G200165).  

The processes described previously include single sample QC processes that are not described 

here.  The processes in this document focus on downstream analytical QC processes after a 

sample has been sequenced or genotyped. 

 

For more details about the array single sample QC process, including preparation, see 

Appendix J. 

 

Table 1 -- Single Sample QC processes 

QC process Data types Passing criteria Error modes addressed Beta Release results 

Fingerprint 
concordance 

WGS (uses 
Arrays) 

log-likelihood ratio > -3 -Sample swaps 
-Large amount of sample 
contamination 

All array and WGS sample pairs 
are concordant. 

Sex concordance WGS and 
Arrays 

Sex call is concordant with self-
reported sex at birth.  
OR 
Self-reported sex at birth 
reported as “Other” or was not 
reported 

-Sample swaps All array and WGS samples are 
concordant.  
 
 



Call rate Arrays > 0.98  (> 98%) -Sample contamination 
-Sample preparation error 

All array samples meet the 
threshold.   
 
Inconsistency across GCs was 
discovered.  See the Call Rate 
Section and Known Issues #2 
 
We erroneously failed 2997 array 
samples, which are not included 
in the release.  However, we 
have included the corresponding 
WGS samples.  See Known 
Issues #1.  

Cross-individual 
contamination rate 

WGS and 
Arrays 

WGS:  < 0.03 (< 3%)  
Arrays: None (Reported only) 

Sample contamination from 
another individual 

All WGS samples meet the 
threshold.   
 
For arrays, we only report the 
contamination rate, but do not 
filter array samples, since the call 
rate is a proxy for high levels of 
contamination.   
 
WGS samples with 
corresponding arrays that have a 
contamination rate above 10% 
were not released. 

Coverage WGS ≥ 30x mean coverage 
 
≥ 90% of bases at 20x coverage 
 
≥8e10 aligned Q30 Bases  
 
≥ 95% at 20x in regions of the 59 
AoU Hereditary Disease Risk 
genes (AoUHDR) See Appendix 
F for more information 

-Sample preparation error 
-Poor sensitivity and precision of 
variant calling 

All WGS samples meet the 
thresholds. 

 

 

Fingerprint Concordance 

Method 

We filter variant calls to 114 sites (“fingerprint”) for both the array and WGS variants.  We 

measure the concordance between the array and WGS data, using a log-likelihood ratio 

(fingerprint LOD) based on reads.  We chose the threshold value, -3.0,to split a bimodal 

distribution (not shown).  If the calls are not concordant (i.e., the fingerprint LOD does not meet 

the threshold), then there has likely been a sample processing error.  A detailed description of 

fingerprint concordance is described in the Genome Analysis Toolkit documentation. [3]  

 

We call the fingerprint concordance using Picard (version 2.23.9) with the following parameters: 

 

Parameter Value 

program name “CheckFingerprint” 



INPUT The WGS cram to check concordance 

REFERENCE_SEQUENCE “gs://gcp-public-data--broad-
references/hg38/v0/Homo_sapiens_assembly38.fasta” 

GENOTYPES VCF from corresponding array file 

HAPLOTYPE_MAP “gs://gcp-public-data--broad-
references/hg38/v0/Homo_sapiens_assembly38.haplotype_datab
ase.txt” 

IGNORE_READ_GROUPS “true” 

SAMPLE_ALIAS Chipwell barcode from the header of the array file (array file 
passed in the GENOTYPES parameter) 

Note: Quoted parameters are exact values, but quotes were not included in the actual call to the 

tool. 

Results 

All samples in Beta passed the fingerprint concordance check.  We were able to run fingerprint 

checks on WGS samples using the arrays, but 2,997 of the corresponding array files were not 

included in this release (see Known Issue #1) 

As seen in Figure 1, the passing samples exceeded the threshold. Fourteen samples had a 

fingerprint LOD [3] less than 45 and the minimum fingerprint LOD was 13. 

 
Figure 1 -- Distribution of the Fingerprint LODs for WGS Beta samples 

Sex Concordance 

We checked the computed sex against the self-reported sex at birth for concordance (see 

Appendix H).  If the two sources were not concordant, we assumed a potential sample swap, 

removed the sample, and investigated the source of the swap.  If we do not have a “male” or 



“female” for the sex at birth, because the participant reported it as “Intersex”, “I prefer not to 

answer”, “none of these fully describe me”, or skipped the question, we passed the sex 

concordance check for that sample. 

WGS 

Method 

We compare variant and ploidy calls for chromosome X and Y against the self-reported sex at 

birth for the sample.  We check the sex ploidy call (e.g., XY or XX) from the DRAGEN pipeline 

(v 3.4.12) and use heterozygous chrX variant calls from peddy [4].  If the concordance test fails 

against either of these calls, the sample fails QC and is not included in the release.  If we do not 

have a “male” or “female” for the sex at birth, because the particpant reported it as “Other” or 

skipped the question, we will pass sex concordance regardless of the information from peddy 

and DRAGEN. 

 

DRAGEN invocations include a wide breadth of functionality, including ploidy calls (see 

Appendix G for the parameters). 

 

The DRAGEN pipeline outputs a single sample VCF, which is primarily used in the clinical 

pipeline (for individual samples), but we use it for our call to peddy.  We call peddy with the 

following parameters: 

 

Parameter Value 

vcf Single sample VCF from DRAGEN (hard-filtered) 

Pedigree file We create this file dynamically based on the single sample and its 
sex call.  Please note:  This implies that we do not use pedigree 
information in our peddy call. 

 

Results 

Since we catch sex concordance failures before including a sample in the release, all WGS 

samples in Beta passed a sex concordance check.  Note that 1.2% of samples passed the sex 

concordance check due solely to their answer on the self-reported sex at birth (“I prefer not to 

answer”, “none of these fully describe me”, “Intersex”, or skipped the question).  See Appendix 

H for a full breakdown of self-reported sex at birth.  

Array 

Method 

We call the gencall tool [5] v3.0.0 to make a call on the sex of the sample.  We use the Picard 

2.26.0 tool, CollectArraysVariantCallingMetrics [6], to perform the actual concordance check 

against the self-reported sex at birth.  If we do not have a “male” or “female” for the sex at birth, 



because the participant reported it as “Other”, “Intersex”, or skipped the question, we will pass 

sex concordance regardless of the sex call from the array. 

 

To generate sex calls from the array, we call gencall from the Illumina Array Analysis Platform 

Genotyping Command Line Interface (iaap-cli): 

 

Parameter Value Notes 

Tool name “gencall”  

Manifest file Bead pool manifest (BPM) Illumina-supplied file that contains 
metadata (alleles, mapping information, 
source, etc.) for all of the probes on the 
genotyping array. 

Cluster file Cluster file (EGT) Used for normalization of intensities 
across GCs 

-f Location of the idat files  

-i “1” Algorithm version 

--gender-estimate-call-rate-
threshold 

-0.1  This effectively disables the sex 
estimation. 

 

To ensure concordance with the self-reported sex at birth, we call 

CollectArraysVariantCallingMetrics with the following parameters from the Picard toolkit: 

 

Parameter Value 

Tool name “CollectArraysVariantCallingMetrics” 

INPUT Array single sample VCF 

DBSNP "gs://gcp-public-data--broad-
references/hg38/v0/Homo_sapiens_assembly38.dbsnp138.vcf" 

Results 

Since we catch sex concordance failures before including a sample in the release, all array 

samples in Beta passed a sex concordance check.  Note that 1.1% of samples passed the sex 

concordance check due solely to their answer on the self-reported sex at birth (“I prefer not to 

answer”, “none of these fully describe me”, “Intersex”, or skipped the question).  See Appendix 

H for a full breakdown of self-reported sex at birth. 



Call Rate (Array only) 

Method 

The call rate is the number of successful variant calls divided by the number of probes.  We 

invoke the gencall tool [5] v3.0.0, as described above in Sex Concordance, which generates 

both sex calls and the call rate.  We also invoke CollectArraysVariantCallingMetrics with the 

same parameters to extract the call rate metric from the VCF header. 

 

We applied a threshold of 0.98 to the call rate for inclusion in Beta, but we believe that we were 

overly-aggressive filtering samples due to an internal inconsistency with call rate methodology 

applied across GCs (see Known Issue #2). 

Results 

As seen in Figure 2, we did not include any samples that were below the call rate threshold of 

0.98.  During the generation of the release, we discovered an inconsistency across GCs in the 

calculation of call rates.  The methodology was updated to make the GCs consistent, but this 

resulted in two separate call rate populations, as seen in Figure 2.  These dual peaks hold for all 

three GCs, as seen in Figure 3. 

 

 
Figure 2 -- Histogram of the array call rate for Beta.  Note that a correction in call rate calculation led to two peaks in 

the histogram. 

 



 
Figure 3 -- Call rate across each GC.  Note that the bimodal distribution is seen across centers. 

 

Cross-individual Contamination Rate 

For all samples, we estimate the proportion of data coming from an individual other than the one 

being processed (contamination rate).   We follow two separate processes for WGS and arrays.  

Samples can only fail a contamination rate check for WGS.  For arrays, as the contamination 

rate increases, we expect a lower call rate.  We fail array samples for a call rate that does not 

meet the threshold. 

WGS 

Method 

We estimate the percent contamination from another individual by counting the number of reads 

at common homozygous alternate SNP sites.  If there is a small amount of cross-individual 

contamination, we expect to see small numbers of reads supporting SNPs at these sites.  We 

determine the percentage of the sample that may have come from a different individual, using 

VerifyBamID2 [7], and the DRAGEN 3.4.12 pipeline.  Contamination rate is a float value from 

0.0 - 1.0, which represents 0 to 100%. 

 

DRAGEN invocations include a wide breadth of functionality, including contamination estimates 

(see Appendix G for the parameters). 

 

We use the following parameters for VerifyBamID2: 

 

Parameter Value 

NumPC “4” 



BamFile WGS cram file 

Reference “gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_assembly38.fasta” 

UDPath “gs://gcp-public-data--broad-references/hg38/v0/contamination-
resources/1000g/1000g.phase3.100k.b38.vcf.gz.dat.UD” 

BedPath “gs://gcp-public-data--broad-references/hg38/v0/contamination-
resources/1000g/1000g.phase3.100k.b38.vcf.gz.dat.bed” 

MeanPath “gs://gcp-public-data--broad-references/hg38/v0/contamination-
resources/1000g/1000g.phase3.100k.b38.vcf.gz.dat.mu” 

Verbose specified 

Results 

We did not include any samples with a contamination larger than 0.018 and only three samples 

greater than 0.015.  See Figure 4 for the frequency of contamination estimates for samples in 

Beta. 

 

 
Figure 4 -- WGS contamination estimates from both sources (DRAGEN and VerifyBamID2).  DRAGEN rounds the 

contamination estimate to three decimal places.  Note the log scale of the counts (y-axis).  Over 88.1% and 90.5% of 

WGS samples had contamination estimates lower than 1e-4 by VerifyBamID2 and DRAGEN, respectively.  Any 

samples above the contamination threshold would not have been included in Beta. 

Array 

Method 

We use BAFRegress [8] to estimate the contamination rate in our array data.  We do not use 

the cross-individual contamination rate to filter array samples, though we do not process the 

corresponding WGS aliquots for any array sample with a contamination greater than 10%.   We 

filter samples based on the call rate, which is a proxy for contamination and other errors,such as 



sample preparation errors.   Note that most samples with a contamination rate greater than 10% 

will also notmeet the call rate thresholds. 

 

We extract allele frequency information from the array VCF and convert into the file format 

expected by BAFRegress.  We then invoke BAFRegress with the following parameters: 

 

Parameter Value 

task “estimate” 

freqfile Allele frequency information for all sites, which was 
extracted from the single sample array VCF. 

 

Results 

We estimated the contamination rate below 0.11 for all array samples.  As the contamination 

rate increased, we did see a small decrease in the call rate (see Figure 5).  Of the 165,208 array 

samples, 159,930 (96.8%) had a contamination rate less than 3%, 154,993 (93.8%) less than 

1%, and 99% of the arrays had an estimated contamination rate below 3.5%.   

 
 
Figure 5 -- Histogram of the array contamination rate estimates vs call rate.   As the contamination rate increases, the 

call rate decreases.  



Coverage (WGS only) 

Method 

Coverage is defined as the number of reads covering the bases of the genome.  Maintaining 

coverage is important for consistent statistical power and accurate variant calling.  We apply 

several thresholds (summarized from the FDA IDE (G200165)): 

● Mean coverage (threshold ≥30x) - This is the mean number of overlapping reads at 

every targeted base of the genome. Accuracy steadily decreases as mean coverage 

decreases, with a rapid decrease below 20x coverage, supporting a stringent threshold 

selection of a minimum of 30x. 

● Genome coverage (threshold ≥90% at 20x) - Accuracy steadily decreases as the 

percent of bases with at least 20x coverage drops. Drop-off of performance is initially 

gradual, supporting a threshold of 90%. 

● All of Us Hereditary Disease Risk gene (AoUHDR) coverage (threshold ≥95% at 20x) - 

For clinically relevant areas of the genome, we insist on higher mean coverage to ensure 

a higher calling accuracy.  As we reduce the coverage in the AoUHDR region, the 

reduction in performance is slow initially, but increases rapidly below 40%, showing that 

the threshold of 95% is conservative. 

● Aligned Q30 bases (threshold ≥8e10) - All bases in the sequencing reads get a quality 

assignment, which is phred scaled (Q30 → probability of error is 0.001) [9].  As lower 

base quality counts increase, we see a reduction in accuracy, with an inflection point 

starting around 6e10. 

 

Result 

As seen in Figure 6, all WGS samples exceed the thresholds that we set as part of the research 

pipeline.  We had 107 samples with mean coverage greater than 70x.  None of these samples 

were flagged in our joint callset QC.    



 
Figure 6 -- Coverage metrics for BetaWGS samples.  The orange line is the threshold for each metric.  There are 107 

samples (0.1%), with mean coverage greater than 70x, that are not included in the mean coverage (upper left) nor 

aligned q30 bases (lower right) plots.  As expected, these samples were outliers in the number of aligned q30 bases 

(i.e., higher base count than samples with lower mean coverage). 

Joint Callset QC (WGS only) 

We deliver our WGS variants as a joint callset [10].  We perform QC on joint callsets and make 

the output accessible to researchers in RWB.  Please note that the QC steps described here 

apply during creation of the WGS joint callset.  These QC steps are not run on individual 

samples (e.g., GVCFs), though we flag individual samples based on these QC metrics.  The list 

of flagged samples (and other auxiliary information, such as ancestry predictions) is available 

through the User Support Hub [1]. The joint callset QC process is similar to that of gnomAD 3.1 

[11], though not exactly the same.  We have described our process here and it is summarized in 

Table 2. 

Table 2 -- Joint callset QC summary 

QC process Variant/
sample? 

Error modes addressed Notes 

Hard Thresholds  sample Extremely noisy samples No samples flagged. 

Population Outlier sample Noisy samples 159 samples flagged (0.16%). 
 
Based on regressing out the PCAs from callset 



metrics, such as snp_count. 

Hard Threshold 
Filters 

variant Artifacts that cannot be 
detected in a single 
sample 

This has a simple implementation with high 
precision, which saves compute for downstream 
variant filtering.   
45,429,424 were filtered 
657,238,701 were not filtered 

Allele-Specific 
VariantQualityScore
Recalibration (AS-
VQSR) 

variant Artifacts that cannot be 
detected in a single 
sample 

See [12]. 

Sensitivity and 
Precision Evaluation 

both Poor variant detection See Appendix D for a list of samples. 

Auxiliary processes 

Ancestry sample Flagging sample outliers 
and allows calculation of 
population level metrics, 
such as allele frequency 
(AF). 

Error rate from holdout set (incl. Other):  0.045 
Error rate from holdout set (not incl. Other):  0.008 
Concordance vs self-reported: 0.877 
See Appendix A. 
 
Number of independent, bi-allelic sites (“high-
quality sites”) used:  56671 
See Appendix B. 

Relatedness and 
maximal 
independent set of 
samples 

sample Related samples, which 
confound analyses 

4851 related pairs and 4071 samples in the 
maximal independent set 
 
See Appendix C. 
This process produces a list of the sample pairs 
with kinship score, calculated by Hail [13].  No 
samples are removed from the callset, but this 
allows researchers to easily remove a minimal set 
of samples to eliminate related samples in the 
callset. 
 
We believe that some participants were included 
more than once in the WGS callset (possibly due to 
multiple registrations and blood draws).  Please 
see Known Issue #4. 

Method 

Below is the list, in order, of the steps to perform the joint callset QC in Beta: 

1. Sample Hard Threshold 

2. Sample Population Outlier 

3. Variant Hard Threshold 

4. Allele-Specific Variant Quality Score Recalibration (AS-VQSR) [Filtering] 

5. Sensitivity and Precision Evaluation 

 

The first two steps flag samples (“Sample QC”).   The filtering steps (Variant Hard Filtering and 

AS-VQSR) apply to variants in the joint callset (“Variant QC”).  We then measure the sensitivity 

and precision of the joint callset.    



Sample QC 

We flagged samples as failing QC, rather than removing them from the callset, since we could 

not validate whether samples (especially population outliers) were problematic or were just a 

part of a poorly-sampled ancestry.  Flagged samples will be published in a list to researchers 

through the User Support Hub [1].  These pipelines will flag samples based on the data from the 

entire joint callset.  Therefore, sample-level QC (e.g., contamination) is handled upstream from 

the process described here.  Sample QC is performed before Variant QC (e.g., Sample QC 

happens before AS-VQSR) 

Hard Threshold Flagging 

We believe that some samples will have strong erroneous signals. We flag these from the joint 

callset as an initial step.  The criteria for being eliminated as “obviously erroneous” will be: 

 

● number of SNPs: < 2.4M and > 5.0M 

● number of variants not present in gnomAD 3.1: > 100k 

● heterozygous to homozygous ratio (SNPs and Indel separately): > 3.3 

We calculated all metrics using autosomal territory only. 

 

We did not flag any samples for failing hard thresholds. 

Population Outlier Flagging  

We regressed out sixteen principal component features, computed as part of ancestry prediction 

(see Appendix A), and used the residuals to determine the outliers.  We define outlier samples 

as being eight median absolute deviations (MADs) away from the median residual in any of the 

following metrics: 

i. number of deletions 

ii. number of insertions 

iii. number of SNPs 

iv. number of variants not present in gnomAD 3.1 

v. insertion : deletion ratio 

vi. transition : transversion (TiTv) ratio 

vii. heterozygous to homozygous ratio (SNPs and Indel separately)  

We flagged 159 (0.16%) samples as outliers based on at least one of the above criteria (See 

Table 3 for details).  Plots of the first principal components against these eight metrics can be 

found in Appendix I. 

 
Table 3 -- Population outlier sample counts 

 

Metric(s) considered Flagged sample 
count 

Indel heterozygous to homozygous ratio 64 



Variants not present in gnomAD 3.1 count 48 

Indel heterozygous to homozygous ratio +  SNP count 12 

Deletion count + Indel heterozygous to homozygous ratio +  
Insertion count + SNP count 

11 

Indel heterozygous to homozygous ratio + SNP 
heterozygous to homozygous ratio 

7 

Ti/Tv ratio + Variants not present in gnomAD 3.1 count 3 

Deletion count + SNP count 3 

Deletion count + Indel heterozygous to homozygous ratio + 
Insertion count + SNP count + SNP heterozygous to 
homozygous ratio 

3 

SNP heterozygous to homozygous ratio 2 

Deletion count + Insertion count + SNP count 2 

Indel heterozygous to homozygous ratio + SNP count +  
SNP heterozygous to homozygous ratio 

2 

SNP count 1 

Deletion count + Indel heterozygous to homozygous ratio + 
 SNP count 

1 

  

Total 159 

 

Variant QC  

These processes will flag specific variants from a callset.  Filtered variants will be included in 

cohorts, both the entire callset and cohorts generated with Cohort Builder.  For example, if a 

cohort was exported to VCF, the variant will appear as filtered in the VCF filter field (“FILTER”). 

Hard Threshold Filters 

If a variant does not meet the following criteria, it will be filtered (ie, a value will appear in the 

FILTER field of VCFs and Hail MatrixTables (MT)): 

● No high-quality genotype (GQ>=20, DP>=10, and AB>=0.2 for heterozygotes) called for 

the variant.  

○ Allele Balance (AB) is calculated for each heterozygous variant as the number of 

bases supporting the least-represented allele over the total number of base 

observations.  In other words, min(AD)/DP for diploid GTs. 

○ Filter field value: NO_HQ_GENOTYPES 

● ExcessHet < 54.69 



○ ExcessHet is a phred-scaled p-value. We cutoff of anything more extreme than a 

z-score of -4.5 (p-value of 3.4e-06), which phred-scaled is 54.69 

○ Filter field value: ExcessHet 

● QUAL score is too low (lower than 60 for SNPs;69 for Indels) 

○ QUAL tells you how confident we are that there is some kind of variation at a 

given site. The variation may be present in one or more samples. 

○ Filter field value: LowQual 

Unfiltered variants will have “.” or “PASS'' in the FILTER field in the WGS joint callset VCFs and 

Hail MT.  We recommend that researchers do not include sites that were filtered in their 

analyses. 

The variant counts can be found in Table 4. 

Table 4 -- Hard threshold filter variant counts 

Filters Numbers 

None 657238701 

'NO_HQ_GENOTYPES' 23286484 

'NO_HQ_GENOTYPES', 'LowQual' 18836755 

'LowQual' 2732058 

'ExcessHet' 572723 

'NO_HQ_GENOTYPES', 'ExcessHet' 1404 

 

 

Allele-Specific VariantQualityScoreRecalibration 

As part of the joint calling, we will filter variants with Allele-Specific Variant Quality Score 

Recalibration (AS-VQSR or VQSR) [12].  This filtering technique uses machine learning to 

identify variants across samples that are likely artifacts.  We used the following annotations as 

features for training: 

● Variant Confidence/Quality by Depth (AS_QD) 

● Z-score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities 

(AS_MQRankSum) 

● Z-score from Wilcoxon rank sum test of Alt vs. Ref read position bias 

(AS_ReadPosRankSum) 

● Phred-scaled p-value using Fisher's exact test to detect strand bias (AS_FS) 

● RMS Mapping Quality of reference vs alt reads (AS_MQ)  

● Symmetric Odds Ratio of 2x2 contingency table to detect strand bias 

(AS_SOR) [Indels only] 

 



We used the default training sets as described in the GATK documentation [14], except that we 

use one additional source of training data (Axiom) for indels.  Each training set is assigned a 

flag whether it is representative of true sites, whether we use the sites for training and an initial 

prior likelihood score.  Details of these parameters can be found in the GATK documentation 

[12,14], and the sites can be found as public resource downloads for the GATK [15].  We have 

reprinted the training resource list below for clarity, including the documentation from the GATK 

at the time of this writing: 

● SNP training sites: 

○ Omni -- This resource is a set of polymorphic SNP sites produced by the Omni 

genotyping array [16]. VQSR will consider that the variants in this resource are 

representative of true sites (truth=true), and will use them to train the 

recalibration model (training=true). The prior likelihood we assign to these 

variants is Q12 (93.69%). 

○ HapMap [17] -- This resource is a SNP callset that has been validated to a very 

high degree of confidence. VQSR will consider that the variants in this resource 

are representative of true sites (truth=true) and will use them to train the 

recalibration model (training=true). We will also use these sites later on to choose 

a threshold for filtering variants based on sensitivity to truth sites. The prior 

likelihood we assign to these variants is Q15 (96.84%). 

○ 1000G [18] -- This resource is a set of high-confidence SNP sites produced by 

the 1000 Genomes Project. VQSR will consider that the variants in this resource 

may contain true variants as well as false positives (truth=false) and will use 

them to train the recalibration model (training=true). The prior likelihood we 

assign to these variants is Q10 (90%). 

● Indels: 

○ Mills [19] -- This resource is an Indel callset that has been validated to a high 

degree of confidence [31]. VQSR will consider that the variants in this resource 

are representative of true sites (truth=true) and will use them to train the 

recalibration model (training=true). The prior likelihood we assign to these 

variants is Q12 (93.69%). 

○ Axiom (1000G) -- This resource is an indel callset based on the Affymetrix Axiom 

array on 1000 Genomes Project samples [18].  VQSR will consider that the 

variants in this resource may contain true variants as well as false positives 

(truth=false) and will use them to train the recalibration model (training=true) The 

prior likelihood we assign to these variants is Q10 (90%). 

Sensitivity and Precision Evaluation  

In the callset, we included four well-characterized control samples (four Genomes-in-a-Bottle 

samples (GiaB) [20] from HapMap [17] and Personal Genome Project; see Appendix D), which 

we can use to determine sensitivity and precision.  The samples were sequenced with the same 

protocol as AoU.  These samples do not appear in any user data (e.g., cohorts built with RWB). 

We use the high confidence calling region, defined by GiaB v4.2.1, as the source of 

ground truth.  In order to be called a true positive, a variant must match the chromosome, 

position, reference allele, and alternate allele.  In cases of sites with multiple alternate alleles, 



each alternate allele is considered separately.  Sensitivity and precision results can be seen in 

Table 5. 

 
Table 5 -- Sensitivity and precision measurements for control samples using the AoU sequencing protocol 

Variant type Sample Sensitivity Precision 

SNV HG-001 0.994 >0.999 

HG-003 0.986 >0.999 

HG-004 0.986 >0.999 

HG-005 0.987 >0.999 

Indel HG-001 0.963 0.996 

HG-003 0.962 0.998 

HG-004 0.963 0.998 

HG-005 0.978 0.999 

 

Known Issues 

The issues below apply to the Beta genomic data (arrays, WGS, and auxiliary data).  These will 

be addressed in the next callset release (ETA 2022), unless stated otherwise.  We have 

provided suggested actions for researchers to workaround the issue.  Sample lists relevant to 

these issues can be found in the User Support Hub [1]. 

1. WGS samples are not a strict subset of the array samples 

● Affects: 

○ WGS joint callset VCFs 

○ WGS joint callset Hail MatrixTable (MT) 

● Suggested action:  

○ If your analysis explicitly involves cross-analyzing WGS samples and the 

corresponding arrays: Remove the 2,997 affected WGS files from your 

analysis. 

○ Otherwise: No action 



● Description:  As described in Known Issue #2 below, the array data is missing 

2,997 participants that are included in the WGS samples.  The array samples 

were removed for having a low call rate (under 0.98), but this was due to an 

inconsistency between the call rate tools being used by the GCs and the DRC.  

We were still able to use these arrays in our WGS array fingerprint concordance 

QC step.  Once the inconsistency is corrected, we believe that these samples will 

be above the call rate threshold.  Note that none of the corresponding array 

samples had a call rate below 0.967, even when using the most pessimistic 

estimate, and none failed any other QC check for arrays. 

○ The sample list (2,997 (3.0%) WGS samples) will be provided through the 

Support Hub. 

● Remediation: We are addressing this in two ways: 

○ As part of the next release (ETA 2022), we will be reprocessing all array 

data that is part of Beta.  As part of this effort, we will be synchronizing 

the way call rates are calculated.  For all future callsets, this will further 

reduce the possibility of having internal inconsistencies over which 

samples should be included. 

○ We will implement an automated process which will disallow a WGS 

sample to be included in the joint callset without a corresponding array 

that passes the single sample QC. 

 

2. Extraneous array samples were failed due to 

inconsistency of call rate calculations and are missing from 

the array data 

● Affects: 

○ Array VCFs 

○ Array Hail MT 

○ Array PLINK bed/bim/fam 

● Suggested action: None.  We will provide the sample list of WGS samples 

without corresponding arrays in RWB.   

● Description:  We failed 2,997 arrays with corresponding WGS for not meeting the 

call rate threshold of 0.98 (see Table 1), even though these passed clinical call 

rate QC at the GCs.  These arrays did not fail any other single sample QC check, 

but are not included in Beta array VCFs, Hail MT, or PLINK files.  In the single 

sample QC, the DRC generated lower call rate values than the GCs (see Table 

6), which prevented samples from meeting the call rate threshold. The DRC was 

using a different call rate metric (gencall) than the GCs had agreed to use (GTC); 

GTC call rate yields a higher value, on average.  The DRC was not able to switch 

GTC call rate, because one GC (Johns Hopkins (JH)) was using an older version 

of the picard tool that disallows calculation of the GTC call rate.  The minimum 

gencall call rate was 0.967; the average difference between the two call rate 



metrics was 0.004.  We believe that this difference in call rates is not large 

enough to fail the corresponding WGS files outright. Where we had 

corresponding WGS and an array that only failed the minimum call rate, we used 

the array file to perform our fingerprint concordance check. All corresponding 

WGS passed the fingerprint concordance check of the 2997 arrays failing only 

callset rate with corresponding WGS. 

● Remediation:  As part of the next release, we will be reprocessing all array data 

that is part of Beta.  As part of this effort, we will be synchronizing the way call 

rates are calculated.  This will remove any possibility of having internal 

inconsistencies over which array samples we include.   

 
Table 6 -- Summary statistics of the DRC and GC array call rates in the Beta Release 

Call Rate DRC GC 

Mean 0.991 0.995 

Standard Deviation 0.003 0.003 

Minimum 0.967 0.980 

25% 0.990 0.994 

50% 0.991 0.995 

75% 0.993 0.997 

Maximum 0.996 >0.999 

 

3. Ancestry prediction has higher error rates for Middle Eastern 

ancestry 

● Affects: 

○ Ancestry predictions 

○ Variant Annotation Table (VAT) 

○ Public genomic data browser 

● Suggested Action: When limiting cohorts to samples with computed ancestry of Middle 

Eastern (“mid”), use the ancestry predictions that do not include “other”.  In other words, 

use the “ancestry_pred” column, instead of “ancestry_pred_other”. 

● Description:  A paucity of labeled Middle Eastern samples reduced the performance of 

the random forest classifier.  This caused the confidence to dip when predicting ancestry 

for Middle Eastern samples, which caused a larger proportion of these samples, relative 

to other computed ancestries, to be classified as Other (“oth”).  The VAT uses these 

computed ancestries to generate All of Us population (gvs_mid_*  and gvs_oth_*) 

annotations.  The Public Genomic Data Browser is also dependent on the ancestry 

predictions for populating population information about variants. 



See Table A.2 for details of the ancestry prediction performance 

● Remediation:  We will address this issue by tuning the classifier confidence threshold for 

“oth” classification.  If this approach does not yield a lower error rate, we will investigate 

other approaches for classification.  We will start the updated approach with the next 

callset (ETA 2022) 

 

4. Possible duplicate samples 

● Affects: 

○ WGS joint callset VCFs 

○ WGS joint callset Hail MT 

○ Array VCFs 

○ Array Hail MT 

○ Array PLINK bed/bim/fam 

● Suggested Action: 

○ If your analysis already removes related samples, then no action 

○ Otherwise, consider removing samples 

 

● Description:  We are investigating whether these are twins or two samples from the 

same person (“duplicate”), but we believe that these are unlikely to all be pairs of twins.  

We saw a large increase in the number of twins between the (internal only) Alpha 2 

Release (1 twin pair in 22,052 samples) and Beta (131 twin pairs in 98,622 samples).  

The 131 pairs with a kinship estimate above 0.45 should be assumed as twins or 

duplicates.  These sample pairs were fingerprint concordant, which is based on the 

arrays.  We do not provide relatedness information for arrays (though the WGS are a 

subset of the arrays).  We believe that we have not identified all of the duplicate/twin 

samples in the arrays. 

● Remediation:  We are investigating whether these pairs are duplicates or twins based on 

sample metadata.  Starting in future callsets (ETA 2022), any samples that we can 

identify as a duplicate (not twin) will be removed. 

5. No depth information (e.g., AD) in the WGS data 

● Affects: 

○ WGS joint callset VCFs 

○ WGS joint callset Hail MT 

● Suggested Action:  None 

● Description:  Beta does not include depth information for the variants.  This will reduce 

the ability of researchers to do additional QC on their variants (e.g. checking allelic 

fraction on chrX calls). 

● Remediation (both ETA 2022): 

○ We will include depth information for the genotypes (eg, Allelic Depth (AD) or 

minor allelic fraction (genotype AF + genotype depth (DP)). 



○ We will release crams for our WGS samples.  Researchers can use this to derive 

depth information for specific variants. 

 

6. Extraneous information in the WGS data 

● Affects: 

○ WGS joint callset VCFs 

○ WGS joint callset Hail MT 

● Suggested Action:  Do not include the fields, listed in Table 7, in any analyses. 

● Description:  The WGS joint callset includes both INFO and FILTER fields that should be 

ignored by researchers.   

○ Extraneous INFO fields have a header entry in the VCF and a field in the Hail 

MT.  One extraneous INFO field (AS_YNG) is populated, but the rest do not 

appear in the variant data.   

○ Extraneous FILTER fields will only be present in the VCF header.  These will not 

be found in the VCF variant data nor anywhere in the Hail MT.   

○ Details are found in Table 7. 

 
Table 7 -- Extraneous fields in the WGS genomic data 

Field Name Category Notes 

AS_YNG INFO -Appears in the VCF header 
-This field is populated in both the VCFs 
and the Hail MT.   
 
We recommend that researchers ignore 
this field. 

END INFO -Only appears in the VCF header.  Not 
used in the variant calls. 
-In the Hail MT, the field exists, but all 
values are missing. 

EXCESS_ALLELES FILTER -Only appears in the VCF header.  This 
filter was never applied. 
-Does not appear in the Hail MT 

ExcessHet INFO -Only appears in the VCF header.  Not 
used in the variant calls. 
-In the Hail MT, the field exists, but all 
values are missing. 
 
There are two “ExcessHet” fields.  One is 
an INFO field and the other is a FILTER.  
The ExcessHet INFO field should be 
ignored, but the ExcessHet FILTER field 



should still be considered. 

NAY FILTER -Only appears in the VCF header.  This 
filter was never applied. 
-Does not appear in the Hail MT 

 

● Remediation (ETA 2022): 

○ We will remove these fields in future releases. 

FAQ 

1. Why do you fail samples based on contamination rate for WGS, but not for array 

samples? 

WGS analyses (e.g. mosaicism) rely on other signals, such as read counts, 

which are affected by contamination.  Low rates of contamination do not affect 

array calls and problematic levels of contamination will be reflected in the array 

call rate. 

 

2. Did you remove samples from participants with bone marrow transplants?  

Yes, we removed both array and WGS samples associated with participants that 

have received bone marrow transplants, according to the corresponding 

electronic health record (EHR) and participant provided information 

(PPI/surveys). 

 

3. Are all samples in the WGS joint callset sourced from blood? 

Yes.  Although the program does have saliva WGS samples, we did not include 

these samples in Beta.  Once we identify any batch effects between saliva and 

blood samples (ETA 2022), we will reassess the inclusion of saliva samples in 

the joint WGS callset.  If we decide that the batch effects will have minimal 

impact, we will include saliva samples in the WGS joint callsets in 2023. 
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Appendix A: Ancestry 

We computed categorical ancestry for all of the WGS samples in All of Us and made these 

available to researchers.  These predictions are also the basis for population allele frequency 

calculations in the Variant Annotation Table (e.g. gvs_afr_ac) and data in the public genomic 

data browser.   We used the high-quality set of sites (HQ sites), described in Appendix B, to 

determine an ancestry label for each sample.  The ancestry categories are based on the same 

labels used in gnomAD [21], Human Genome Diversity Project [22], and 1000 Genomes [18]: 

● African (afr) 

● Latino/Native American/Ad Mixed American (amr) 

● East Asian (eas) 

● Middle Eastern (mid) 

● European (eur) -- Composed of Finnish (FIN) and Non-Finnish European (NFE) 

● Other (oth) -- not belonging to one of the other ancestries or is an admixture. 

● South Asian (sas) 

 

We trained a random forest classifier [23,24] on a training set of the HGDP and 1kg samples 

variants on chromosomes 20 and 21, obtained from gnomAD [25]. We generated the first 16 

principal components (PCs) of the training sample genotypes (using the hwe_normalized_pca in 

Hail [26]) at the high-quality variant sites (see Appendix B) for use as the feature vector for each 

training sample.  We used the truth labels from the sample metadata, which can be found 

alongside the VCFs.  Note that we do not train the classifier on the samples labeled as “Other.”  

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://gnomad.broadinstitute.org/downloads#v3-hgdp-1kg
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We use the label probabilities (“confidence”) of the classifier on the other ancestries to 

determine ancestry of “Other”. 

 

To determine the ancestry of All of Us samples, we project the All of Us samples into the PCA 

space of the training data and apply the classifier (see Figure A.1).  Since we do not have truth 

labels, we can not determine the accuracy of our All of Us predictions.  As a proxy for the 

accuracy of our All of Us predictions, we look at the concordance between the survey results 

and the predicted ancestry.  The ancestry predictions can be found in Table A.1. 

 
Figure A.1 -- Ancestry predictions for the All of Us WGS samples plotted on the first two principal components (PC1 

on x-axis and PC2 on the y-axis) of the genotype calls. 

 

 
Table A.1 -- Breakdown of the computed ancestries in All Of Us WGS data 

Computed Ancestry (sorted by percentage) Count (percentage) 

European 48351 (49.0%) 

African 23066 (23.4%) 

Latino/Admixed American 15072 (15.3%) 

Other 8880 (9.0%) 



East Asian 2116 (2.1%) 

South Asian 968 (1.0%) 

Middle Eastern 169 (0.2%) 

  

Total: 98622 (100.0%) 

 

We evaluated the performance of the ancestry predictions using two different test datasets: 

1. A holdout set of training samples.  We tested performance with- and without the “Other” 

ancestry 

a. Error rate (incl Other): 0.045 

i. See Table A.2 

ii. Please see Known Issue #3, since the error rate is higher for Middle 

Eastern (mid) ancestry.  Our classifier conflates Middle Eastern and 

Other. 

b. Error rate (not incl Other): 0.008 

i. See Table A.3 

 
Table A.2 -- Error rate (incl. Other) on labeled training data using holdout set 

 Predicted 

Actual AFR AMR EAS EUR MID OTH SAS 

AFR 200 0 0 0 0 0 0 

AMR 0 50 0 0 0 0 0 

EAS 0 0 198 0 0 2 0 

EUR 0 0 0 199 0 1 0 

MID 0 0 0 0 35 15 0 

OTH 1 0 2 3 10 25 6 

SAS 0 0 0 0 0 3 197 

 

 

 

 

Table A.3 -- Error rate (not incl. Other) on labeled training data using holdout set 

 Predicted 

Actual AFR AMR EAS EUR MID SAS 

AFR 200 0 0 0 0 0 



AMR 0 50 0 0 0 0 

EAS 0 0 200 0 0 0 

EUR 0 0 0 199 0 0 

MID 0 0 0 6 44 0 

SAS 0 0 1 0 0 199 

 

2. The All of Us samples and their corresponding self-reported ethnicity as ground truth.  

The performance should be worse than the holdout HGDP samples, but this is expected.  

Self-reported ethnicity does not correspond to the populations listed above and is prone 

to false reporting. 

“Correct” labeling between HGDP/1kg populations and All of Us ethnicities: 

1. African (AFR) → Black 

2. Latino/Ad Mixed American (AMR) → Hispanic 

3. East Asian (EAS) → Asian 

4. Finnish (FIN) → White 

5. Middle Eastern (MID) → MENA 

6. Non-Finnish European (NFE) → White 

7. Other (OTH) → Other (do not include skipped) 

8. South Asian (SAS) → Asian 

  

We do not include any samples where the self-reported ethnicity is “Skip”, is “Prefer not 

to answer”, or was not filled in.  If a participant selected that their ethnicity was not a possible 

selection (“NoneOfThese”), we counted them as “Other”. 

 

Based on the procedure above, the concordance between self-reported ethnicity and the 

ancestry predictions: 0.880 

Appendix B: High quality site determination 

In order to do relatedness and ancestry checks, we identified a corpus of sites that can be 

called accurately in both our ancestry training set (HGDP+1KG) and our target data (All of Us 

WGS callset).  We used a similar methodology that gnomAD used to determine high-quality 

sites [11], but we repeat it here for clarity: 

1. Autosomal, bi-allelic single nucleotide variants (SNVs) only 

2. Allele frequency > 0.1%  

3. Call rate > 99% 

4. LD-pruned with a cutoff of r2 = 0.1 

 

Our aim was to assemble a set of independent sites, where we can be confident of the 

accuracy. 

 



We identified 56671 high-quality (HQ) sites in the Beta callset.  These were HQ sites in both the 

HGDP+1kg training VCF and the All of Us Beta callset.  A sites-only VCF of the HQ sites is 

available in RWB (access required). 

 

Appendix C: Relatedness  

We calculated the kinship score and reported any pairs with a kinship score over 0.1.   

The kinship score is half of the fraction of the genetic material shared (ranges from 0.0 - 0.5). 

● Parent-child or siblings: 0.25 

● Identical twins: 0.5 

Please see the Hail pc_relate function [13] documentation for more information, including 

interpretation. 

We will determine the maximal independent set [27] for related samples to minimize the number 

of samples that would need pruning.  Using the HQ sites identified in Appendix B, researchers 

can remove first and second degree relatives. 

 

We estimated 4,851 related pairs and 4,071 samples in the maximal independent set for kinship 

scores above 0.1.  The sample pairs, with kinship score, and the set are available in RWB 

(access required). 

Appendix D: Samples used in the Sensitivity and 

Precision Evaluation 

In order to calculate the sensitivity and precision of any joint callset, we included four well-

characterized samples in the Beta callset (Table D.1).  We sequenced NIST reference materials 

DNA samples from Genome in a Bottle (GiaB) as the four samples.  We used the corresponding 

published set of variant calls for each sample as the ground truth in our sensitivity and precision 

calculations [20]. 

 

Please note that the control samples do not appear in the data released to researchers. 

   
Table D.1 -- Samples used in sensitivity and precision evaluation 

Control 
Sample 

Ground Truth Genome 
Center 

GVCF origin Notes 

HG-001 GiaB BI DRAGEN 3.4.12 NA12878 

HG-003 GiaB UW DRAGEN 3.4.12 Ashkenazi Trio 
NA24149 - Father 

HG-004 GiaB BI DRAGEN 3.4.12 Ashkenazi Trio 
NA24143 - Mother 

HG-005 GiaB BI DRAGEN 3.4.12 Han ancestry 
NA24631- Son 

https://hail.is/docs/0.2/_modules/hail/methods/relatedness/pc_relate.html
https://en.wikipedia.org/wiki/Maximal_independent_set


 

Genome Center: 

BI -- Broad Institute 

UW -- University of Washington 

 

Appendix E: Single sample QC processes 

performed 

See Table E.1 to determine which of the single sample QC processes were performed.  In 

cases where both GCs and the DRC performed a check, if the sample failed either check, it was 

not included in Beta (though see Known Issues above for exceptions regarding call rate). 

 
Table E.1 -- Single sample QC processes and which centers performed the check 

QC process Data types Calculated at the DRC or GCs? 

Fingerprint Concordance WGS Both* 

Sex concordance Arrays GCs only 

Sex concordance WGS Both 

Cross-individual contamination rate Arrays GCs only 

Cross-individual contamination rate WGS Both 

Call rate Arrays GCs only 

Coverage WGS GCs only 

 

*One GC (Broad Institute) performed an internal check against a different fingerprint (Fluidigm SNP 

genotyping (SNPtype chemistry) using the 96.96 Dynamic Array), which did not use the same fingerprint 

sites as the array.  The DRC treated these samples the same as from the other GCs and ran the array 

concordance as described in the main text of this document. 

Appendix F: All of Us Hereditary Disease Risk genes 

The following gene symbols are in the All of Us Hereditary Disease Risk  (AoUHDR) genes.  We 

have additional WGS QC criteria in the regions covered by these genes, described in Table 1 of 

the main text.  In Beta, the AoUHDR genes are the same as the American College of Medical 

Genetics and Genomics’ list of 59 genes where incidental findings should be reported 

(ACMG59) [28].  The AoUHDR gene list may change in future releases. 

 

ACTA2, ACTC1, APC, APOB, ATP7B, BMPR1A, BRCA1, BRCA2, CACNA1S, COL3A1, DSC2, 

DSG2, DSP, FBN1, GLA, KCNH2, KCNQ1, LDLR, LMNA, MEN1, MLH1, MSH2, MSH6, 

MUTYH, MYBPC3, MYH11, MYH7, MYL2, MYL3, NF2, OTC, PCSK9, PKP2, PMS2, PRKAG2, 

PTEN, RB1, RET, RYR1, RYR2, SCN5A, SDHAF2, SDHB, SDHC, SDHD, SMAD3, SMAD4, 



STK11, TGFBR1, TGFBR2, TMEM43, TNNI3, TNNT2, TP53, TPM1, TSC1, TSC2, VHL, and 

WT1 

Appendix G: DRAGEN invocation parameters 

Table G.1 summarizes the parameters used by the GCs to generate GVCFs, contamination 

estimates, and sex ploidy calls from the DRAGEN. 

 
Table G.1 DRAGEN 3.4.12 parameters run at all GCs 

Parameter Parameter Value Description 

-f n/a Overwrite if output exists 

-r <hg38-ref-dir> The reference to use 

--fastq-list <path-to>/fastq_list.csv 

A list of fastq files to use as input for 

this sample 

--fastq-list-sample-id <sampleID> 

The sample ID to use for naming this 

sample 

--output-directory <output-dir> The location of the final output files 

--intermediate-results-dir <int-results-dir> 

The location to write intermediate 

outputs 

--output-file-prefix 

[CenterID]_[Biobankid_Sampleid]_[Lo

calID:optional]_[Rev#] 

Standardized naming prefix for each 

output file 

--enable-variant-caller TRUE Turn on variant call outputs 

--enable-duplicate-marking TRUE 

Mark duplicate reads during 

alignment 

--enable-map-align TRUE 

Produce an alignment from unaligned 

read input 

--enable-map-align-output TRUE Store the output of the alignment 

--output-format CRAM Store the alignment as a CRAM file 

--vc-hard-filter 

DRAGENHardQUAL:all:QUAL<5.0;Lo

wDepth:all:DP<=1' 

This parameter setting changes the 

threshold on the quality to 5. 

--vc-frd-max-effective-depth 40 

Setting this parameter puts a limit on 

the penalty value that is applied for 

variant calls that deviate from the 

expected 50% allele fraction for 

heterozygous variants. 

--qc-cross-cont-vcf 

<path-to/SNP_NCBI_GRCh38.vcf> 

Marker sites to use for contamination 

estimation  

--qc-coverage-region-1 <path-to/wgs_coverage_regions.bed> 

Regions to use for coverage analysis 

(whole genome) 

--qc-coverage-reports-1 cov_report 

The type of reports requested for qc- 

coverage-region-1 

--qc-coverage-region-2 <path-to/HDRR_regions.bed> Regions to use for coverage analysis 



(HDR reportable regions) 

--qc-coverage-reports-2 cov_report 

The type of reports requested for qc- 

coverage-region-2 

--qc-coverage-region-3 <path-to/PGx_regions.bed> 

Regions to use for coverage analysis 

(PGx reportable regions) 

--qc-coverage-reports-3 cov_report 

The type of reports requested for qc- 

coverage-region-3 

Appendix H: Self-reported sex at birth 

See Table H.1 for the counts and percentages of participant responses to the sex at birth survey 

question (based on All of Us CDR release C2021Q3R5).  The survey question presented to 

participants was “What was your biological sex assigned at birth?” 

 
Table H.1  -- Beta participants response breakdown to sex at birth question         

Beta  WGS  Array 

Sex at birth 

responses counts percent  counts percent 

Female 59190 60.00  99840 60.43 

Male 38290 38.83  63555 38.47 

Skip  1004 1.02  1600 0.97 

I prefer not to answer 80 0.08  122 0.07 

None of these fully 

describe me 35 0.04  55 0.03 

Intersex 23 0.02  36 0.02 

Total 98622   165208  

 

Percentages may not add to 100 due to rounding. 



Appendix I: Plots of the first principal component 

against population outlier QC metrics 

Figure I.1 contains the plots of the first principal component against metrics used for 

determining sample population outliers.  Note that we use sixteen principal components for 

determining which samples should be flagged for being outliers in a metric.  The blue line shows 

the linear regression fit in the first dimension (residuals are calculated as the distance from this 

hyperplane).  The failure count over these plots will sum higher than the 159 flagged samples, 

since samples can get flagged for multiple criteria. 

 

 





 
  
Figure I.1 -- Sample population outlier plots for eight metrics (see Population Outlier Flagging).  Each metric (y-axis) 

is plotted against the first (of sixteen) principal components (x-axis).  Outliers are identified by regressing out the 

principal components and determining if the residual is over 8 MADs from the sample population.  

Appendix J: Array processing overview 

See Figure J.1 for an overview of the array genotyping process for the All of Us Research 

Program.  The three GCs used identical array products, scanners, resource files, and genotype 

calling software.  The GCs used the Illumina Global Diversity Array (GDA) 

(https://www.illumina.com/products/by-type/microarray-kits/infinium-global-diversity.html). 

● Array product details:  

○ Bead pool file: GDA-8v1-0_A5.bpm 

○ EGT cluster file:  GDA-8v1-0_A1_ClusterFile.egt   

○ gentrain v.3 

○ reference hg19 (Note:  We liftover to hg38 before publishing array data in RWB)  

○ gencall cut-off 0.15 

○ 1,914,935 assays 

■ 44,172 indels 

■ 9,935 IntensityOnly (probes intended only for Copy Number Variant 

(CNV) calling) 

■ 70,174 duplicates (same position, different probes) 

● Chemistry:  Illumina Infinium LCG using automated protocol 

● Liquid handling robotics:  Various platforms across the genome centers 

● Scanners:  Illumina iSCANs with Automated Array Loader 

● Software: 

○ Illumina IAAP Version: iaap-cli-linux-x64-1.1.0-

sha.80d7e5b3d9c1fdfc2e99b472a90652fd3848bbc7.tar.gz 

https://www.illumina.com/products/by-type/microarray-kits/infinium-global-diversity.html


■ IAAP converts raw data (.idat files – 2 per sample) into a single .gtc file 

per sample using the .bpm file (defines strand, probes sequences, and 

illumicode address) and the .egt file (defines the relationship between 

intensities and genotype calls) 

○ Picard-2.20.X or above [29], but exact version depended on the GC. 

■ Johns Hopkins: 2.20.8-SNAPSHOT 

■ Broad Institute: 2.23.0 

■ University of Washington: 2.23.3   

■ Picard versions 2.23.0 and above modified GtcToVcf to read the 

gtc_call_rate from the GTC file and put it into the VCF header.   

● Please see Known Issue #1 and Known Issue #2 for issues that 

arose due to Picard version inconsistencies. 

■ Picard tool, GTCtoVCF, converts the .gtc file into a vcf file. 

○  BAFRegress version 0.9.3 [8] 

■ BAFRegress measures the within species DNA sample contamination 

using B allele frequency data from Illumina genotyping arrays using a 

regression model 

● Quality Control:  Each genome center ran the GDA array under Clinical Laboratory 

Improvement Amendments (CLIA) compliant protocols.  We generated .gtc files and 

uploaded metrics to in-house Laboratory Information Management Systems (LIMS) 

systems for quality control review.  At batch level (each set of 96 well plates run together 

in the laboratory at one time), each GC included positive control samples, which were 

required to have > 98% call rate and >99% concordance to existing data, in order to 

approve release of the batch of data.  At the sample level, the call rate and sex are the 

key quality control determinants [30].  Contamination is also measured using 

BAFRegress [8] and reported out as metadata.  Any sample with a call rate below 98% 

is repeated one time in the laboratory.  Genotyped sex is determined by plotting 

normalized X versus normalized Y intensity values for a batch of samples [30].  Any 

sample discordant with ‘sex at birth’ reported by an All of Us participant is flagged for 

further detailed review.  If multiple sex discordant samples are clustered on an array or 

on a 96 well plate, the entire array or plate will have data production repeated.  Samples 

identified with sex chromosome aneuploidies are also reported back as metadata (XXX, 

XXY, XYY, etc).  A final processing status of “PASS,” “FAIL” or “ABANDON” is 

determined before release of data to the DRC.  An array sample will PASS if the call rate 

is > 98% and the genotyped sex and sex at birth are concordant (or the sex at birth is 

NA).  An array sample will FAIL if the genotyped sex and the sex at birth are discordant 

or if the call rate is less than 98% on the first run of the sample.  An array sample will 

have the status ABANDON if the call rate is less than 98% after at least 2 attempts at 

the GC. 

 



 
Figure J.1 -- Overview of the array processing pipeline. 

 

Appendix K: Self-reported race/ethnicity 

As seen in Table K.1, the race/ethnicity breakdown of the genomic data is similar to all 

participants in the AoURP (based on All of Us CDR release C2021Q3R5).  “PMI_Skip” 

responses include respondents that answered “prefer not to answer”, entered blank text, or did 

not respond to the question. As seen in Appendix L, all WGS and array samples have 

corresponding survey data.   

 
Table K.1 -- Self-reported Race/Ethnicity breakdown of the WGS samples 

Self-Reported 

Race/Ethnicity 

Survey 

Response 

Counts (%) 

WGS Counts (%) Array Counts (%) 

Asian 10784 (3.3%) 2980 (3.0%) 5164 (3.1%) 

Asian, White 1417 (0.4%) 396 (0.4%) 689 (0.4%) 

Black 68044 (20.5%) 21342 (21.6%) 32378 (19.6%) 

Black, White 1864 (0.6%) 535 (0.6%) 870 (0.5%) 

Hispanic 53411 (16.1%) 17336 (17.6%) 26225 (15.9%) 

Hispanic, White 4867 (1.5%) 1368 (1.4%) 2307 (1.4%) 

MENA 1886 (0.6%) 522 (0.5%) 909 (0.6%) 

Other 8565 (2.6%) 2382 (2.4%) 3905 (2.4%) 



PMI_Skip 5860 (1.8%) 1888 (1.9%) 3009 (1.8%) 

White 174674 (52.7%) 49873 (50.6%) 89753 (54.3%) 

Total 331382 (100.0%) 98622 (100.0%) 165208 (100.0%) 

 

Appendix L: Data type availability with genomic data 

We provide 95,625 WGS samples (97%) with corresponding array data (see Known Issues #1 

for why this is not 100% of WGS samples).  Additionally, both WGS (Table L.1) and array (Table 

L.2) data have other corresponding non-genomic data.  This can be one or more of the 

following: 

● Electronic Health Records (EHR) 

● Physical Measurements (PM) 

● Participant Provided Information (PPI/surveys) 

● Fitbit (FB) 

 

Descriptions of the non-genomic data can be found on the All of Us Data Sources  page. 

 
Table L.1 -- WGS overlap with non-genomic data types 

Summary of participant WGS + other data types 

WGS+EHR+PM+PPI 74,715 

WGS+PPI+PM 17,903 

WGS+All 2,682 

WGS only 0 

WGS+PPI+FB+PM 642 

WGS+PPI 1,662 

WGS+PPI+EHR 780 

WGS+FB+PPI 155 

WGS+FB+PPI+EHR 83 

WGS total 98,622 

Total WGS + EHR 78,260 

Total WGS + FB 3,562 

 
Table L.2 -- Array overlap with non-genomic data types 

Summary of participant Array + other data types 

https://www.researchallofus.org/data-tools/data-sources/
https://www.researchallofus.org/data-tools/data-sources/
https://www.researchallofus.org/data-tools/data-sources/


Array+EHR+PM+PPI 126,519 

Array+PPI+PM 28,706 

Array+All 5,727 

Array only 0 

Array+PPI+FB+PM 1,304 

Array+PPI 1,869 

Array+PPI+EHR 832 

Array+FB+PPI 161 

Array+FB+PPI+EHR 90 

Array total 165,208 

Total Array + EHR 133,168 

Total Array + FB 7,282 

 

Appendix M: Genome Centers and Data and 

Research Center 

Below is the listing of the three Genome Centers (GCs), the Data and Research Center (DRC), 

and the Biobank. 

 

 

Role Institution(s) PI(s) 

Genome Center Baylor College of Medicine, Johns 
Hopkins University 

Richard Gibbs 
Eric A. Boerwinkle 
Kimberly F. Doheny 

Broad Institute Stacey Gabriel 

Northwest Genomics Center at the 
University of Washington 

Deborah A. Nickerson 

Data and Research Center Vanderbilt University Medical Center Paul Harris 
Dan M. Roden 

Broad Institute Anthony Philippakis 

Verily Life Sciences David Glazer 



Biobank Mayo Clinic Stephen Norman Thibodeau 

 


