
 

Benchmarking and quality analyses on 
the All of Us short-read structural variant 
catalog 
All of Us Curated Data Repository (CDR) release C2024Q3R3 

Introduction 
Widespread benchmarking of structural variants (SVs) from short-read whole genome 
sequencing (srWGS) remains a significant challenge for the field of human genetics. The All of 
Us cohort of samples with srWGS SV data is unique in the availability of matched genomic 
datasets (i.e. single-nucleotide variant [SNV] arrays and long-read genome sequencing 
[lrWGS]). There also exist a number of intrinsic measures that can be used to assess the 
technical quality of a dataset (e.g. comparisons to external datasets, assessments of inherited 
variation, comparison of allele frequency spectra and variant size distributions, and population 
genetic principles such as Hardy-Weinberg Equilibrium). Combining these methods, we assess 
seven measures of technical quality for the srWGS SV All of Us dataset, described in the 
Genomic Research Data Quality Report [1] and this supplemental document.  
 
In the Genomic Research Data Quality Report [1], we describe:  

1. Variant counts (cohort-wide and per-sample) relative to gnomAD V2 [2] and the most 
recent 1000 Genomes Project high-coverage srWGS callset [3] 

2. Size distribution of SVs 
3. Hardy-Weinberg equilibrium 

 
In this supplemental benchmarking report, we additionally describe: 

4. Linkage disequilibrium with srWGS SNVs and Indels 
5. Patterns of evolutionary constraint 
6. Benchmarking against lrWGS 
7. Benchmarking against microarrays 

Comparisons to SNVs and Indels 

Linkage disequilibrium with SNVs and Indels 

Data and Methods 
 



 

Given that most common SVs segregate on haplotypes with distinct sets of SNV and small 
insertion and deletion variant (indel) calls, the presence of nearby SNVs and indels in linkage 
disequilibrium (LD) with SV calls is an indicator of SV callset quality.  

To quantify this, we computed LD between the srWGS SV joint callset and SNVs and indels 
from the srWGS SNP and Indel joint callset. We conducted this analysis in Hail v0.2.130 in a 
Python notebook backed by a Spark 3.5.0 cluster with 12 non-preemptible and 24 preemptible 
worker nodes. Due to the high computational resources necessary for these calculations, LD 
analyses were conducted on a subset of 14,968 samples. We analyzed samples from the All of 
Us genetic ancestry groups with at least 900 samples in the SV callset: 1KGP-HGDP-EUR-like 
(EUR; n=47,884 samples in entire cohort), 1KGP-HGDP-AFR-like (AFR; n=24,222), 
1KGP-HGDP-AMR-like (AMR; n=15,361), 1KGP-HGDP-EAS-like (EAS; n=2,054), and 
1KGP-HGDP-SAS-like (SAS; n=914). Genetic ancestry group labels describe the genetic 
similarity of each group to a reference population based on the srWGS SNP and Indel data and 
are further described in the Genomic Research Data Quality Report Appendix G [1]. We 
randomly selected 4,000 samples from each genetic ancestry group that contained more than 
4,000 samples in the cohort (AFR, AMR, and EUR) and selected all of the samples from the 
EAS and SAS ancestry groups to get a total subset of 14,968 samples. We analyzed LD 
between all SVs with PASS filter status and SNVs and indels with PASS filter status that had a 
minor allele frequency of at least 1% in either the full cohort or one of these genetic ancestry 
groups. 
 
LD between the callsets was computed according to the same methods used for the All of Us 
CDRv7 benchmarking and quality analyses [4]. To recap, we computed LD by first constructing 
two matrices:  
 

1. An m x n matrix A where m is the number of SV calls after minor allele frequency 
filtering, n is the number of samples in the cohort or genetic ancestry group, and Aij is the 
number of alternate alleles for sample j at SV site i. 

2. An s x n matrix B where s is the number of SNVs and indels after minor allele frequency 
filtering and Bij is the number of alternate alleles for sample j at SNV/indel site i.  
 

We defined LD as the R2 of alternate allele dosage between each pair consisting of one SV site 
and one SNV site [5]. We calculated R2 values by computing the matrix multiplication ABT after 
mean-centering and variance-standardizing each matrix, and then squaring each entry of the 
resulting correlation matrix. We limited computation to SV/SNV pairs where the SNV was within 
1 megabase of the SV by defining a window extending from 1 megabase (Mb) before the start 
position (POS) of the SV to 1 Mb after the end position (END). Then, correlations were 
computed between each SV and the SNVs located within the window using Hail’s block matrix 
sparsification functionality. For each SV we identified the SNV with which the R2 value was 
maximized. Given that previous LD analyses of SVs have shown that LD was much weaker for 
SVs that occurred in repetitive sequence contexts [2], we further subdivided the results 
according to the genomic context in which the SV occurs; we classified each SV as occurring in 



 

segmental duplications (SD), simple repeats (SR), other repeat-masked sequence (RM), or the 
unique sequence (US) outside of RM using methods from Zhao et al. 2021 [6]. 

Results 
A violin plot of the maximum SNV or indel R2 for each SV appears in Figure 1, separated into 
the following SV types: insertion (INS), duplication (DUP), deletion (DEL), complex structural 
variant (CPX), and inversion (INV). The median R2 of the SNV in highest LD with each SV is 
0.78 for insertions, 0.13 for duplications, 0.80 for deletions, 0.93 for complex events, and 0.83 
for inversions. Similar results hold when samples are subset into genetic ancestry groups 
(Figure 2). Figure 3 shows the results of stratifying events of each SV type by the genomic 
sequence context it appears in. The median R2 value of the SNV in highest LD with each SV, 
broken into SV types within each genomic sequence context, is given in Table 1. There were no 
inversions annotated as belonging to simple repeats in the callset. Stratifying by sequence 
context shows that the low overall LD of duplications was driven by events within SR or SD 
sequence contexts (median maximum R2 in SD: 0.15; SR: 0.05), while duplication variants 
within US or RM contexts have detectable LD comparable to the other SV types (Figure 3; 0.83 
median in US, 0.80 median in RM). It should be noted that biological factors, potentially 
including increased mutation rates and recombination rates in repetitive sequence contexts 
such as simple repeats and segmental duplications, as well as technical factors such as the 
difficulty of discovering SVs and SNVs in those contexts, contribute to the expected lower LD 
scores identified in repetitive regions of the genome. As illustrated in Figure 4, in unique 
sequence contexts all variant classes have high median LD with a nearby SNV (INS: 0.93; DUP: 
0.83; DEL: 0.93; CPX: 0.92; INV: 0.78). 
 
 

 
 
 
Figure 1 -- The distribution of maximum SNV-SV R2 values for each SV type in this analysis. 
 
 
 



 

 
Figure 2 -- The distribution of maximum SNV-SV R2 values for each SV type, stratified by the 
genetic ancestry group of the participant (ALL: all samples; EAS: 1KGP-HGDP-EAS-like; AMR: 
1KGP-HGDP-AMR-like; AFR: 1KGP-HGDP-AFR-like; SAS: 1KGP-HGDP-SAS-like; EUR: 
1KGP-HGDP-EUR-like). 
 

 
 
Figure 3 -- The distribution of maximum SNV-SV R2 values for each SV type, stratified by 
genomic context (SR: simple repeat; SD: segmental duplication; US: unique sequence; RM: 
repeat-masked sequence). 
 

 
Figure 4 -- The distribution of maximum SNV-SV R2 values for each SV type when limited to 
regions of the genome with unique sequence context, stratified by the genetic ancestry group of 
the participant (ALL: all samples; EAS: 1KGP-HGDP-EAS-like; AMR: 1KGP-HGDP-AMR-like; 
AFR: 1KGP-HGDP-AFR-like; SAS: 1KGP-HGDP-SAS-like; EUR: 1KGP-HGDP-EUR-like).  



 

 
Table 1 -- Median SNV-SV R2 value for each SV type, stratified by genetic ancestry groups  
and genomic context  

 SV Type 

Genetic 
ancestry 
group 

Sequence 
Context DEL DUP INS CPX INV 

ALL US 0.934 0.828 0.930 0.919 0.757 

RM 0.925 0.797 0.908 0.933 0.870 

SD 0.534 0.145 0.844 0.897 0.895 

SR 0.502 0.052 0.191 0.939 N/A 

AFR US 0.947 0.826 0.941 0.922 0.899 

RM 0.937 0.840 0.920 0.928 0.940 

SD 0.548 0.162 0.844 0.879 0.755 

SR 0.468 0.082 0.202 0.952 N/A 

AMR US 0.929 0.832 0.924 0.924 0.772 

RM 0.915 0.796 0.901 0.921 0.752 

SD 0.483 0.146 0.818 0.918 0.918 

SR 0.477 0.036 0.159 0.839 N/A 

EAS US 0.925 0.823 0.899 0.915 0.611 

RM 0.895 0.765 0.875 0.899 0.773 

SD 0.429 0.147 0.806 0.891 0.886 

SR 0.384 0.029 0.133 0.954 N/A 

EUR US 0.936 0.839 0.925 0.924 0.617 

RM 0.914 0.914 0.905 0.915 0.847 

SD 0.516 0.162 0.830 0.905 0.935 

SR 0.476 0.030 0.149 0.931 N/A 

SAS US 0.930 0.838 0.921 0.929 0.690 

RM 0.911 0.797 0.901 0.921 0.921 

SD 0.474 0.157 0.825 0.905 0.928 

SR 0.445 0.050 0.167 0.843 N/A 



 

Patterns of evolutionary constraint 

Methods 
Patterns of evolutionary constraint across genes have been previously examined in SNVs and 
indels and quantified by the loss-of-function observed/expected upper bound fraction (LOEUF) 
score [8]. Analyses in gnomAD-SV V2 showed that SVs exhibit similar trends of gene-level 
intolerance to variation [2]. To demonstrate that the CDRv8 srWGS SV callset exhibits the same 
fundamental biological signals, we replicated the methods in Collins et al. 2020 [2] to examine 
trends of SV constraint in comparison to SNV constraint. Briefly, we estimated the depletion of 
rare SVs per gene compared to the expected count of SVs per gene, using a negative binomial 
regression model.  
 
We subsetted the VCF to sites with a PASS filter status, then to the maximal set of 93,360 
unrelated samples in the CDRv8 srWGS SV callset. Next, we computed the number of rare (AF 
<1%) SVs observed per gene for all autosomal protein-coding genes, across four different 
classes of functional consequences. The functional consequence categories used in this 
analysis were predicted loss-of-function (pLOF), copy gain duplication (CG, in which an entire 
gene is duplicated), intragenic exonic duplication (IED, in which intact exons are duplicated 
without disrupting coding sequence), and spanning inversion (INV, in which an inversion spans 
an entire gene). 
 
Based on gene characteristics and these observed counts, we trained a negative binomial 
regression model to predict the expected counts of SVs of different functional classes for each 
gene. We incorporated the following factors into the model: gene length, total and median exon 
length, total and median intron length, number of exons, number of introns, and the proportion 
of the gene overlapped by segmental duplication regions. We trained the model on the genes 
exhibiting relatively neutral selection in the 5th to 9th LOEUF deciles. We then applied the 
model to estimate the expected number of gene-disrupting SVs in each functional category 
across all autosomal protein-coding genes in GENCODE v39 [9].  
 
We binned genes by LOEUF percentile (resulting in 100 bins containing an average of 189 
genes each) and compared the estimated expected counts of rare SVs of each functional class 
for the genes in each bin to the observed counts. Finally, we used a two-sided Spearman’s rank 
correlation test to assess the correspondence between SV and SNV constraint across all 100 
bins of genes. 

Results 
Figure 5 shows the results of the constraint analysis for rare coding SVs across four different 
classes of SV functional consequences representing a spectrum of expected impact on the 
protein. As expected, the depletion of rare pLOF SVs shows the strongest concordance with the 
depletion of pLOF SNVs as measured by LOEUF (pLOF Spearman correlation test, ⍴=0.95, 
P<10-100). There is also a strong relationship between CG SV constraint and LOEUF (CG 



 

Spearman correlation test, ⍴=0.90, P<10-100) and a weaker but significant relationship between 
IED SV constraint and LOEUF (IED Spearman correlation test, ⍴=0.73, P<10-100). There is not a 
significant correlation between INV constraint and LOEUF (INV Spearman correlation test, 
⍴=0.05, P=6.56x10-1). These results recapitulate the findings in Collins et al. 2020 [2] and show 
that our findings reflect previously established patterns of evolutionary constraint. 
 

 
 
Figure 5 -- Comparing pLOF SNV constraint as measured by LOEUF percentile (x-axis) to 
binned SV constraint as measured by the rare observed/expected ratio (y-axis) across four 
different functional classes of SVs: A) predicted loss-of-function SVs (pLOF), B) copy gain 
duplications SVs (CG), C) intragenic exonic duplication SVs (IED), and D) inversion SVs  that 
span an entire gene (INV). Points represent observed vs. expected SV count ratios for SVs 
impacting genes in a given LOEUF percentile with a given functional consequence. Solid lines 
represent 21-point rolling means. The results of the two-sided Spearman correlation test (the 
correlation ⍴ and the P-value) are superimposed on each panel. 



 

 

Comparisons to orthogonal data types 

Benchmarking against long-read PacBio sequencing 

Data and methods 
We evaluated passing non-reference SV genotypes based on evidence derived from long-read 
whole genome sequencing (lrWGS). The lrWGS SV calls using existing algorithms can confirm 
SV events with accurate breakpoint resolution, but often miss large insertions and inversions 
near the lrWGS read size, as well as large copy number variants (CNV) that require read depth 
evidence to detect. Read depth signatures are used extensively in the GATK-SV short-read 
pipeline but not in existing lrWGS algorithms. Because of this reduced sensitivity of lrWGS SV 
calling to large SVs, variants larger than 5 kilobases (kb) were excluded from this analysis. 
 
We performed this analysis on a subset of 97 samples with matched lrWGS data that were held 
out from training of the GQ filtering model used for refinement of the SV callset (see the 
Genomic Research Data Quality Report, srWGS SV Genotype Filtering [1]). For each sample, 
passing non-reference genotypes for eligible variants (SV type DEL, DUP, INS, or INV, with 
PASS filter status, below 5 kb in length) were assessed against lrWGS using the lrWGS 
validation tool VaPoR [10] and their overlap with SV calls from lrWGS data from the tools PAV 
[11], PBSV [12], and sniffles2 [13]. Duplications present a challenge to overlap-based methods 
of variant matching, as they can be called either as INS or DUP types, with INS calls either at 
the 5’ or 3’ end of the duplicated sequence. In order to avoid such complications with variant 
representation, the evaluated calls were grouped into three main classes prior to variant 
matching: insertions (encompassing insertions and duplications), deletions, and inversions. 
SrWGS variants were matched with lrWGS variants of the same comparison class by requiring 
10% reciprocal overlap and 50% size similarity. This analysis was performed using the GATK 
SVConcordance tool [14]. 

Results 
The validation callset generated by GATK-SV included 704,155 total non-reference calls 
comprising 52,046 unique deletion, duplication, insertion, and inversion variants under 5kb. 
These calls were strongly supported by lrWGS, with 622,567 (88%) of the PASS genotypes 
confirmed by at least one lrWGS tool. Figure 6 shows the distributions of support from lrWGS for 
insertion and deletion SVs, and Figure 7 shows them for inversions. For each intersection, the 
number of calls is shown with variant size and GQ distributions. Note that the GQ recalibration 
model was trained on a set of independent samples using lrWGS support criteria. Therefore, a 
higher GQ reflects that the call was similar to calls in the training set with support from VaPoR 
and at least one of the three lrWGS SV algorithms (see the Genomic Research Data Quality 
Report, srWGS SV Genotype Filtering [1]). 



 

 
There was a high degree of consensus among the lrWGS callers, with only 58,705 (9.4% of 
confirmed) srWGS SV calls supported by just one lrWGS SV caller and 525,380 (84%) 
supported by at least three. Calls with no lrWGS support had overall lower genotype quality 
(GQ) scores (median 49) compared to supported calls (median 89), which is consistent with 
expectations. Notably, PBSV was the most consistent with srWGS SV calls from GATK-SV, 
supporting 583,802 (94% of confirmed) srWGS calls with a median GQ of 89, compared to the 
remaining 38,765 lrWGS supported calls with a median GQ of 58. 
 
The distribution of calls produced by the three non-depth based srWGS SV calling tools used by 
GATK-SV (Manta [15], Wham [16], and MELT [17]) and the fraction of calls with lrWGS support 
for each is shown in Figure 6B. Overall, Manta produced 569,235 (81%) of passing calls, 89% 
of which were supported by at least one lrWGS SV discovery method. In addition, MELT 
contributed 139,387 (20%) of the calls with 88% lrWGS support. Wham is utilized in this pipeline 
to access a subset of small duplications that are missed by other algorithms, with 93,355 
variants retained after filtering (13% of total) and 87% lrWGS support. Similar to insertion and 
deletion SVs, inversions exhibited a high degree of support from lrWGS, with 805 of 833 (97%) 
validated (Figure 7).  
 

 
Figure 6 -- Evaluation of passing srWGS insertion (INS) and deletion (DEL) calls under 5 kb 
against lrWGS tools. The insertion class encompasses all sequence gain events, including 
duplications. (A) Insertion and deletion SV calls supported by each lrWGS tool (PAV, VaPoR, 



 

sniffles2, and PBSV). Filled circles indicate combinations of tools that support the call counts in 
each column. Combinations with fewer than 5,000 total calls are omitted for clarity. Violin plots 
of genotype quality and log10 of variant length distributions are superposed over each 
combination. Total supported calls for each lrWGS tool are plotted at the bottom-left. (B) 
Insertion and deletion SV calls supported by each srWGS SV caller. The top panel shows the 
fraction of calls with support from at least one lrWGS tool. Combinations with fewer than 2,000 
calls are omitted. 
 
 

 
Figure 7 -- Evaluation of passing srWGS inversion calls under 5 kb against lrWGS tools (PAV, 
sniffles2, PBSV, and VaPoR). Filled circles indicate combinations of tools that support the call 
counts in each column. All non-empty combinations are shown. Violin plots of genotype quality 
and log10 of variant length distributions are superposed over each combination. Total supported 
calls for each lrWGS tool are plotted at the bottom-left.  

Benchmarking large CNVs against microarrays 

Data and Methods 
 
In a randomly-selected subset of 10,000 samples, we evaluated all deletions and duplications 
greater than 10 kb and less than 10 Mb in length on the autosomes using array intensity data 



 

from the LRR field of the array VCFs (available on the Researcher Workbench and described in 
‘How the All of Us Genomic Data are Organized’). To conduct this evaluation we used the 
GenomeSTRiP IntensityRankSumAnnotator (IRS) tool [18,19]. The IRS tool compares the array 
probe intensity values between samples predicted to carry the CNV and those predicted to be 
non-carriers (according to genotypes in the SV VCF), using all probes that are within the CNV 
interval. Using a non-parametric test, the IRS tool assigns a p-value to each CNV which 
indicates if the CNV genotypes are supported by the intensity data. In addition to using site-level 
p-values, the authors of the test recommend [18,19] using IRS to calculate a callset level false 
discovery rate (FDR) by computing , where M is the number of sites where the IRS 2 *  𝑀

𝑁

p-value is greater than 0.5 and N is the total number of sites. CNVs greater than 10 Mb were 
excluded due to the computational requirements required to evaluate array concordance using 
these methods and the fact that the majority of these large events are likely to be somatic 
events that can be challenging to confirm. We note that performance of this validation can be 
compromised for smaller CNVs if there is insufficient probe density in the CNV region on the 
microarrays, which is a common challenge for CNVs less than 20 kb in size. Nonetheless, this 
validation can still be informative in the 10-20 kb size range for many regions of the genome. 
 
We ran the IRS test on all samples at each site. The IRS test requires that an intensity value be 
present for all samples. Therefore, if a sample had a missing data value for one or more of the 
probes covered by the CNV interval, we set the intensity value to a random value such that the 
rank of the inserted value within the cohort would be uniformly distributed. This was achieved by 
choosing another sample at random from the set of samples with non-missing values for that 
probe and setting the missing sample’s intensity value to that of the randomly chosen sample. 
The substitution of missing data points with randomly chosen values was necessary for testing 
the callset against the entire cohort, but could inflate the FDR estimates provided by the IRS 
test. We excluded probes for which over half of the samples had missing values; this resulted in 
the exclusion of one probe from the evaluation. 

Results  
After removing 1,624 CNV sites which did not overlap any array probes and could not be tested, 
34,510 autosomal CNVs of size 10 kb to 10 Mb were evaluated using this test, including 20,274 
deletions and 14,236 duplications. Among the 20,274 deletions evaluated, 210 had an IRS 
p-value greater than 0.5, resulting in an estimated FDR of 2.07% for all deletions tested using 
the callset-wide evaluation procedure described above. We also analyzed the results with a 
stricter p-value cutoff of 0.01, which was the threshold used to select sites for molecular 
validation based on IRS results in a previous study [18]. With the stricter cutoff, 93.4% of 
deletions validated. The results for deletions in different size ranges are shown in Table 2. 
 
Out of the 14,236 duplications evaluated, 405 had a p-value over 0.5, resulting in an estimated 
callset FDR of 5.69% for duplications. Using the stricter p-value threshold of 0.01, 89.8% of 
duplications validated. Duplication results by size range are shown in Table 3. As in the 
discussion of array benchmarking for the CDRv7 release [4], we note that 7.0% (298 / 4,249) of 
duplications and 5.9% (541 / 9,108) of deletions between 10 kb and 20 kb span only one probe, 

https://support.researchallofus.org/hc/en-us/articles/4614687617556-How-the-All-of-Us-Genomic-data-are-organized


 

reducing the statistical power of the IRS test to validate these events at the p-value < 0.01 level. 
Overall, these results show that large CNVs in this callset were strongly supported by 
microarrays, with a very low estimated FDR for both large deletions and large duplications. 
 
Table 2 -- Deletion SV array validation results, stratified by SV size 

Size range Number of sites 
included 

Estimated Callset FDR P-value < 0.01  

10-20kb 9,108 2.66% 8,152 (89.5%) 

20-50kb 5,390 1.37% 5,161 (95.8%) 

50-100kb 2,699 1.93% 2,610 (96.7%) 

100kb-1Mb 2,897 1.31% 2,851 (98.4%) 

1-10Mb 75 0% 75 (100%) 

 
 
Table 3 -- Duplication SV array validation results, stratified by SV size 

Size range Number of sites 
included 

Estimated Callset FDR P-value < 0.01  

10-20kb 4,249 7.44% 3,456 (81.3%) 

20-50kb 4,072 5.21% 3,708 (91.1%) 

50-100kb 2,252 5.33% 2,122 (94.2%) 

100kb-1Mb 3,413 4.16% 3,288 (93.3%) 

1-10Mb 143 1.40% 142 (99.3%) 
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