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Overview
This document details the All of Us Data and Research Center (DRC) quality control (QC)
steps for the generation and release of a structural variant (SV) callset that includes
1,506,805 high-quality SVs across 97,940 participants with short-read whole genome
sequencing (srWGS). We have applied these QC steps in the research pipeline before
release of the genomic data for research use. We only describe QC processes that are
performed analytically herein (i.e., after the sample has been processed, genotyped, and
sequenced).

The descriptions and results in this document are limited to the Curated Data Repository
(CDR) version 7 (v7) SV supplemental dataset made available in the All of Us Researcher
Workbench on June 17, 2024. The CDRv7 SV supplemental dataset contains srWGS SV
calls from 97,940 participants, all of whom have srWGS single nucleotide polymorphism and
small insertion and deletion variant calls (SNPs and Indels) included in the CDRv7 dataset.

Previously in the CDR  v7 C2022Q4R9 data release in 2023, we released srWGS SVs for
11,390 samples. The QC descriptions and results for the complete CDRv7 dataset including
all other genomic data types are available on the User Support Hub [1].

Audience: This document is intended for researchers using, or considering the use of, the
genomic data in the Researcher Workbench. This document assumes knowledge of
sequencing, genotype arrays, common genomic data QC approaches, and the variant file
formats released in All of Us.

Notes:
● Details of the processing (e.g., algorithms) are out of scope for this document.
● The locations of raw data are in the Controlled CDR Directory, published on the User

Support Hub [1]. Auxiliary data sample lists are also published on the User Support
Hub.

● The genomic data mentioned in this document requires Controlled Tier access to
view. Register for access.
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Executive Summary
On June 17, 2024, the All of Us Research Program released the structural variant (SV)
genomic data representing 97,940 participants in the Researcher Workbench for use by
registered researchers with Controlled Tier access. There are over 1.5 million SV sites in the
dataset. With this release of SV data, we increased the percent of srWGS samples that have
SV data to 40%. The data complements the existing genomic data available on the
Workbench, where researchers can analyze 312,945 array samples, 245,394 srWGS SNP
and Indel samples, and 1,027 long-read whole genome sequencing (lrWGS) samples. The
genomic data is paired with other health and survey data available on the Workbench.
Quality control processes, performed both independently and across samples, indicate that
these data are ready for general analysis.
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Introduction
All of Us is collecting biospecimens and generating genomic data for all participants who
have consented among its target of 1,000,000 participants. This document describes the
off-cycle data release of 97,940 samples with srWGS SVs made available in the Workbench
on June 17, 2024. Genomic data can be joined with other data types for analysis on the
Workbench. In this document, we describe the QC processes applied to the SV data.

The srWGS SV calling was performed on 97,940 srWGS samples, which are a subset of the
245,394 CDRv7 srWGS samples with SNP and Indel variant calls. Prior to SV calling, all
samples followed the Consistency across Genome Centers and Single Sample QC
processes in the srWGS QC pipeline. These steps are documented in the CDRv7 All of Us
Genomic Research Data Quality Report available on the User Support Hub [1].

We used GATK-SV to call SVs, which has been previously described [2]. Further technical
information can be found in Appendix A. GATK-SV discovers SVs of the following types:
deletion (DEL) and duplication (DUP), which can together be described as copy number
variants (CNV); insertion (INS); inversion (INV); translocation (CTX); complex event (CPX);
unresolved breakend (BND); and multiallelic CNV (we refer to them as MCNV in this
document but their SV type in the VCF is CNV). See [3] for additional information on SV
types and their evidence signatures.

We outline the sample selection process, the single sample QC, and the joint callset QC.
Single sample QC are the QC processes for each sample independently to catch major
errors. If a sample fails these tests, it is excluded from the release and not reported in this
document. Joint callset QC are the processes executed on the joint callset, which use
information across samples to flag samples and variants.

We have also performed data validation experiments and benchmarking and the results are
shown in other, upcoming documentation (see the User Support Hub [1]).
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Sample Selection for srWGS SVs
We initially selected 100,321 samples for SV calling. The samples were selected from
participants who had srWGS data in the Controlled Tier CDRv6 (C2022Q2R2) dataset or
participants who have been selected for previous or future long-read sequencing. Of these
initially selected samples, we excluded 2,381 (2.37%) from the final callset (Table 1). Of
these 2,381, some were removed between the CDRv6 and CDRv7 (e.g., participant
withdrew) (Table 1). Additionally, we use stricter QC criteria for srWGS SV calling than for
srWGS SNP and Indel calling and as a result, some samples were dropped during the QC
steps. The final CDRv7 off-cycle srWGS SV callset contains 97,940 samples.

The 100,321 selected samples contain 11,439 samples selected for the CDRv7 srWGS SV
callset that passed single-sample SV QC. For a full description of the sample selection
criteria, see the CDRv7 QC report [1]. The remaining 88,882 samples that were not in the
CDRv7 srWGS SV callset are the samples from the CDRv6 srWGS release that were not
previously selected for SV calling.

Table 1 -- Number of samples that were excluded from SV calling

srWGS SV sample exclusion
steps

Number of samples filtered
from initial count
(N=100,321)

Notes

Single sample QC 2066 See Table 2 and Table 3. 2,005
samples were removed by basic filters
and 61 were removed during ploidy
estimation.

Joint SV callset refinement and
QC

11 Outlier samples were removed
following ClusterBatch (see Appendix
A).

Other 304 These are CDRv6 srWGS samples
that were not included in CDRv7 for
reasons unrelated to SV calling (e.g.,
participant withdrew between
releases)

Single Sample QC for srWGS SVs
We performed single sample QC, as described in Table 2 and Table 3, on all 88,882 newly
selected samples for the CDRv7 off-cycle srWGS SV callset. We removed a total of 2,066
samples during srWGS SV single sample QC, which left 86,816 new samples and 98,255
total samples remaining in the callset for downstream processing.
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Basic filters

Method

As seen in Table 2:

1. We performed a cross-individual contamination check following the same protocol
that we used for the srWGS SNP and Indel analysis but with a more stringent
passing criteria of 1%. Previously in the CDRv7 srWGS SV release, this filter was
0.5%. We increased this filter to avoid removing too many samples.

2. We checked the mean insert size of each srWGS sample using the Picard tool
CollectInsertSizeMetrics within GATK’s CollectMultipleMetrics and removed samples
that were outside of the range 320-700.

3. We checked the whole genome dosage (WGD) [2] to identify samples that were
outliers for dosage bias, i.e. whose coverage across the genome was highly variable.
Non-uniformity of coverage negatively impacts copy number variant (CNV) calling.
Samples with a WGD score more than six times the median absolute deviation
(MAD) outside the median were removed, where
𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑊𝐺𝐷

𝑖
 –  𝑚𝑒𝑑𝑖𝑎𝑛(𝑊𝐺𝐷)|).  

4. We counted the number of non-diploid 1 megabase (Mb) bins in each sample. If the
number of bins exceeded our threshold (500), we believed that the coverage would
be too variable for accurate CNV calling,

5. We filtered samples with outlier SV counts from the SV calling tools Manta [4], Wham
[5], and MELT [6] relative to the other samples in the cohort. Higher than typical SV
counts may signify technical artifacts. SV counts were stratified by SV caller,
chromosome, and SV type. Samples that were outliers in 30 or more categories were
removed from the callset.

We removed all samples that failed any of these filters, in total 2,005 (Table 2). Note that
some samples failed multiple filters.

Results
The results for all six basic single-sample filtering steps are summarized in Table 2.

Table 2 -- srWGS SV single sample QC: Basic filters
QC process Passing criteria Error modes addressed Number of

samples
removed

Cross-individual
contamination

≤ 0.01 (≤ 1%) Sample contamination from another individual 296

Mean insert Mean insert size in range Insert size outliers, which could skew 30
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size [320, 700] distributions of discordant pairs

WGD WGD within 6*MAD of the
median, approx. [-0.162,
0.136]

Samples with high variability in coverage
across the genome, which could lead to
unreliable CNV calling from depth evidence

1,337

Number of
non-diploid 1Mb
bins

≤ 500 Samples with high variability in coverage
across the genome, which could lead to
unreliable CNV calling from depth evidence

1,508

SV count
outliers

Sample is an outlier < 30
times across bins of SV
caller, SV type, and
chromosome

Samples with unusually high raw SV counts
after initial SV discovery, which could
introduce large numbers of false positive calls
to the callset

89

Ploidy estimation

Method
We estimated ploidy per chromosome across all 88,882 new samples by binning read
counts in 1Mb intervals and normalizing by half the genome-wide median. We only
performed filtering based on ploidy on the 86,877 samples that passed the basic filters
(Table 2).

We observed likely mosaic loss of chrX and chrY in some samples, as described in previous
studies [7] [8]. These samples had an estimated copy ratio of 0.1-0.8 on chrY and 1.2-1.8 on
chrX and are likely to have mosaic loss of chrX or chrY, but the low copy number could also
be due to large deletions on these chromosomes. For the sex-specific steps of the GATK-SV
pipeline, these samples were classified as follows:

● Grouped with males if chrX rounded ploidy = 1 and chrY ploidy > 0.1
● Grouped with females if chrX rounded ploidy = 2
● Classified as “other” and no calls made on allosomes if chrX rounded ploidy = 1 and

chrY ploidy = 0.

For each sample, the computed sex was compared to the self-reported sex at birth to
evaluate concordance as a check for potential sample swaps. Samples with mosaic loss of
chrX or chrY were grouped as described above.

Samples passed this check if the computed sex matched the self-reported sex assigned at
birth, if there was a predicted germline aneuploidy of an allosome, or if the participant did not
respond or selected an answer other than “male” or “female” for the sex assigned at birth
question in the Basics survey. Because we were looking for sample swaps, we chose these
cutoffs in order to prevent unnecessarily removing samples. Participants can report “Male”,
“Female”, “Intersex”, “I prefer not to answer”, “none of these fully describe me”, or skip the
sex_at_birth question. Please refer to Appendix F in the CDRv7 QC report for additional
details [1].
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Results

We filtered 61 samples because they had an estimated copy ratio greater than 2.3 or less
than 1.8 on at least one autosomal chromosome (Table 3). Plots of binned coverage across
these chromosomes confirmed that these samples may represent mosaic autosomal
aneuploidies. In addition, we discovered 849 samples with a likely mosaic loss of chrX or
chrY among the 86,877 new samples that passed basic filters, though in-depth analyses and
validation of somatic and mosaic variation was outside of the scope of activities for this
callset. All samples passed the comparison check between computed sex and self-reported
sex at birth, indicating no sample swaps based on the computed sex.

Among the 86,877 new samples that passed basic filters and the samples previously
examined during CDRv7 srWGS SV processing, we identified 106 samples with predicted
germline sex chromosome aneuploidies (i.e. computed sex ploidy other than XX, XY, or
mosaic). These samples were classified as “other” for the sex-specific steps of the GATK-SV
pipeline and SV calls were not made on chrX or chrY for these samples.

Lists of the samples identified to have likely mosaic autosomal aneuploidies, likely mosaic
loss of chrX or chrY, and germline sex chromosome aneuploidies are available; for
additional details, read the Controlled CDR Directory on the User Support Hub [1]. These
lists include samples identified from both the 86,877 new samples that passed basic filters
and the samples previously examined during CDRv7 srWGS SV processing.

Table 3 -- srWGS SV single sample QC: Ploidy estimation filters
QC process Passing criteria Error modes addressed Number of

samples
removed

Notes

Estimated copy
number per
autosome
(Ploidy
estimation)

1.8 ≤ copy ratio ≤ 2.3 Samples with mosaic
autosomal aneuploidies,
which could skew
distributions of SV
evidence classes

61 Calculated after
applying all above
filters.
Method can be
found in [2]

Sex
concordance

Computed sex is
concordant with
self-reported sex at birth.
OR
Computed sex is neither
male nor female.
OR
Self-reported sex at birth
reported as “Other”* or
was not reported

Sample swaps 0 All samples passed
this check

*Other refers to a
participant
self-reporting
“Intersex”, “I prefer
not to answer”, or
“none of these fully
describe me”

Batching
We divided the 88,882 new samples into 168 batches with an average of 517 samples in
each batch for the batched analysis steps of the GATK-SV pipeline, depicted in Figure 1.
Batching controls for technical variability between samples and parallelizes computation.
The batching procedure was as follows:
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1. Split by chrX copy ratio (<1.5 and ≥1.5)
2. Split each partition of samples from the previous step four ways by mean insert size
3. Split each partition three ways by WGD score
4. Split each partition two ways by median coverage
5. Merge corresponding partitions by chrX ploidy to balance chrX ploidy within batches

The batching scheme was based on previously described methods [2], except for the
addition of the mean insert size as a batching parameter. We added this to address an
observed multimodal distribution of mean insert size, described previously in the CDRv7 QC
report [1].

Joint Callset Refinement and QC for srWGS SVs
The steps to generate the GATK-SV joint callset are described in Figure 1 and Appendix A.
Appendix A also includes a summary of GATK-SV pipeline improvements that have been
implemented since the CDRv7 srWGS SV release. Below, we describe refinement and
filtering steps introduced in the All of Us srWGS SV dataset that were not published
previously or are modifications to canonical GATK-SV pipelines (blue steps in Figure 1).
These steps include both hard and soft filters at the sample, site, and genotype level (Table
4).
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Figure 1 -- GATK-SV Pipeline Schematic. GATK-SV automated workflows are shown in gray
and the names correspond to the name of the Workflow Definition Language (WDL) file.
Manual steps performed in notebooks are shown in orange. Steps in blue are custom VCF
refinement and QC steps for the All of Us SV callset.

Table 4 -- GATK-SV VCF refinement and filtering steps unique to All of Us
QC process Sample,

variant,
or
genotype
QC

Filter tag Error modes
addressed

Notes

Remove Variant False positive Unique Wham deletions were removed
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Wham-only
deletions

deletions from the callset.

Genotype
filtering

Genotype False positive
genotypes for
INS, INV, DEL,
and DUP

We used a machine learning model to
filter bi-allelic genotypes with a scaled
logit (SL) score. Filtered genotypes are
set to no-call (./.)

Reclustering Redundant sites
in repetitive
regions

No filtering at this step

Removal of
mCNVs <5kb

Variant False positive
MCNVs

Multiallelic CNVs less than 5 kilobases
(kb) in length were removed from the
callset.

Outlier sample
removal

Sample Noisy samples No samples were removed from the
callset at this stage.

Batch effect
correction

Variant VARIABLE_ACR
OSS_BATCHES

Technical artifacts
from batch effects

Mobile element
deletions

Variant Rescue mobile
element deletions
previously
marked
UNRESOLVED

Mobile element deletions detected in this
step were revised to PASS, the SVTYPE
field was set to DEL, and the ALT field
was set to describe the type of mobile
element deletion

Complex SVs,
inversions, and
translocations
curation

Variant
and
genotype

False positive
CTX, INV, and
CPX

Filtered genotypes are set to no call
(./.). Revisions are found in the INFO
field MANUAL_REVIEW_TYPE

Large CNV
curation

Variant
and
genotype

Large CNVs that
are false
positives, have
inaccurate
breakpoints, or
are multiallelic

Revisions are found in the INFO field
MANUAL_REVIEW_TYPE

Genomic
disorder region
re-genotyping

Variant
and
genotype

False positive
and false
negative calls
overlapping
genomic disorder
regions

Genomic disorder regions were
re-genotyped to improve sensitivity and
specificity. Manual revisions are found in
the INFO field MANUAL_REVIEW_TYPE

No-call rate
(NCR) filtering

Variant HIGH_NCR False positives,
technical
artifacts, sites
that are difficult to
genotype

Reference
artifact filtering

Variant LIKELY_REFERE
NCE_ARTIFACT

Sites that are
homozygous in
>99% of samples,
indicating a likely
reference artifact
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Zero-carrier site
removal

Variant Sites are
removed if no
carriers remain
after filtering

Variant sites are removed if no carriers
remain after filtering.

Remove Wham-only deletions
As described in the CDRv7 QC report, we observed very high false-positive rates for
deletions that were uniquely called by the Wham algorithm [5], one of the SV calling
algorithms used by GATK-SV. These variants were removed from the callset.

Genotype filtering (SL filter)
We filtered genotypes of bi-allelic SVs using a machine learning model trained on lrWGS
data. This model recomputes genotype qualities (GQs), enabling us to reduce false positive
INS, INV, DEL, and DUP variant calls while minimizing loss of sensitivity.

Method

lrWGS training data

We selected true positive and false positive training sites for the machine learning model
based on comparisons against long read data. Long read SV calls are ideal for confirming
SV events with accurate breakpoint resolution but are not sensitive to large CNVs (>5kb)
that must be detected by read depth signatures. Therefore, the training labels based on
lrWGS were applied only to DEL and DUP variants less than 5kb in length, as well as INS
and INV variants.

A subset of 893 samples with matched lrWGS data were selected for model training, and an
additional 97 were held out as a test set to validate the model. For each sample,
non-reference genotypes for eligible variants (SV type DEL, DUP, INS, or INV, restricting to
below 5 kb in length for CNVs) were assessed against lrWGS. Calls were first evaluated
using the lrWGS validation tool VaPoR [9]. In addition, the lrWGS variant calling was
performed using the tools PAV [10], PBSV [11], and sniffles2 [12]. The GATK tool
SVConcordance was then used to compute overlap between SV calls from srWGS and
lrWGS [13].

Variants were labeled as positive training examples if:
● The variant had at least two reads supporting the alternate allele according to

VaPoR. We counted a read as supporting the alternate allele if the VaPoR_Rec
score (a confidence score for each long read; positive values indicate support for the
alternate structure described by the SV call) was greater than zero AND

● The variant had at least one long read SV call with at least 10% reciprocal overlap
(ratio of total overlap to the size of the larger call) and 50% size similarity (ratio of the
smaller to larger call size).
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Variants were labeled as negative training examples if:
● The variant had at least 5 reads that VaPoR was able to evaluate in the sample and

no reads had a positive VaPoR_Rec score AND
● The variant was not within 5 kb of a breakpoint of a lrWGS SV call with a matching

SV type.

Variants that did not meet either the positive or negative criteria were dropped from the
training set (Figure 2A).

Filtering model

We trained a model to re-calculate SV genotype qualities based on the training data. This
produced more accurate quality scores to use for filtering low-quality genotypes. We used
XGBoostMinGqVariantFilter, a GATK tool [14], to perform the quality score recalibration. This
tool applies a decision tree from the XGBoost library for gradient boosted machine learning
to predict the quality of a given genotype [15].

The model was trained to assess the probability that a genotype is true given a set of
features that include:

● SV class
● SV size
● allele frequency
● existing genotype quality scores
● read evidence support
● source callers
● concordance with raw calls
● overlap with segmental duplication, simple repeat, mappability, and RepeatMasker

track intervals

The filtering model was trained on labeled non-reference genotypes described in the lrWGS
training data section. The filtering tool annotates each genotype with a scaled logit (SL)
score, for which lower (more negative) scores reflect a low probability of being
non-reference, higher scores (more positive) a higher probability, and a score of 0 being
equally likely. Genotype quality scores were also updated according to SL using the formula:

.𝐺𝑄 =− 10𝑙𝑜𝑔
10

1

(0.52/0.48)𝑆𝐿+1
⎡⎢⎣

⎤⎥⎦
Precision and recall were then calculated across a range of SL cutoffs using the following
equations:

,𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛

𝑇𝑅𝑈𝐸
𝑃𝐴𝑆𝑆

𝑛
𝑇𝑅𝑈𝐸
𝑃𝐴𝑆𝑆 +𝑛

𝐹𝐴𝐿𝑆𝐸
𝑃𝐴𝑆𝑆

,𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑛

𝑇𝑅𝑈𝐸
𝑃𝐴𝑆𝑆

𝑛
𝑇𝑅𝑈𝐸
𝑃𝐴𝑆𝑆 +𝑛

𝑇𝑅𝑈𝐸
𝐹𝐴𝐼𝐿

Where is the number of non-reference srWGS genotypes with truth label X and filter𝑛
𝑋
𝑌

status Y. Note that a recall of 1 corresponds to retaining all srWGS SV calls with lrWGS
support and therefore does not account for false negatives in the initial srWGS SV callset.
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Genotype filtering was applied to the same variant types that were used for training (DEL,
DUP, INS, and INV). See lrWGS training data for additional details. However, the size
restriction on DEL and DUP variants was increased from 5 to 10 kb for filtering, as the
variants in this range are expected to have error modes similar to those used for training
(under 5 kb). Filtering was not applied to CNVs that were either multi-allelic or over 10 kb in
size because those categories lacked training labels.

We filtered each genotype based on a minimum SL cutoff for its SV type and size category.
We selected the SL cutoffs to balance gains in precision with losses in recall. For each SV
type and size category, we calculated the F score, which is a measure of model
performance based on both the precision and recall:

𝐹 = 1 + β2( ) 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑟𝑒𝑐𝑎𝑙𝑙

β2𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙

where 𝛽 is an adjustable parameter. We chose cutoffs to maximize the F scores and attain a
minimum precision of 90% within each SV type and size category. Failed genotypes were
revised to no-call (./.).

We believe that the precision and recall of the filtered callset is high enough for most
applications. Researchers who require a higher-precision callset may apply more stringent
GQ cutoffs, but should be aware that GQ was calculated under a different model than the
SNP and Indel callsets, so typical filtering cutoffs may not produce the desired results.

Results
Analysis of the training samples from lrWGS and genotyping arrays yielded a total of
27,437,577 trainable genotypes, while labels for 15,611,637 genotypes (36% of the total)
could not be determined (Figure 2 A). SL scores from the trained model largely recapitulated
truth labels, with false positives (FP) and true positives (TP) generally having lower and
higher scores, respectively (Figure 2 B).

15

https://docs.google.com/document/d/1MXaqyVDbhsDXMBzSFLbQEdTCLDz_uH7J-iyCOwXLrqA/edit?pli=1#heading=h.5f5th1k298ce


Figure 2 -- Training data for genotype filtering. (A) The proportion of each training label out
of all SV genotypes in the training data, and (B) the SL score distribution produced by the
trained model.

The genotype filtering performance was evaluated in the test set of 97 held-out samples with
matched lrWGS data. We observed that precision decreases consistently as a function of
recall when thresholding on SL (Figure 3). This demonstrates that the method is effective for
tuning callset accuracy. These results also indicate comparable performance across the
spectrum of SV classes. Optimal cutoffs for SL filtering were determined using the training
set as described above and are shown in Appendix Table B.1.

Figure 3 -- SL genotype filtering performance assessed against 97 lrWGS labeled test
samples. (A) Precision-recall curves for all filtering classes, (B) recall as a function of the SL
cutoff value, and (C) precision as a function of the SL cutoff value. Markers depict cutoffs
used for genotype filtering.

We report the performance of the SL genotype filter in Appendix B.

Reclustering in repetitive regions

We applied additional clustering to SVs in repetitive genomic contexts in order to reduce the
number of redundant calls. For insertions in simple repeat regions and deletions and
duplications under 5 kb in length in simple repeat regions or repeat-masked sequences, we
clustered SVs that had 50% reciprocal overlap, had breakpoints within 100 base pairs (bp),
and shared 10% of their carrier samples. We further reclustered the subset of deletions 1-5
kb in length in simple repeat regions and repeat-masked sequences that had 70% reciprocal
overlap, had breakpoints within 1 kb, and shared 10% of their carrier samples. For deletions
and duplications over 5 kb in length in segmental duplications, we clustered SVs that had
30% reciprocal overlap and shared 10% of their carrier samples.

Removal of mCNVs <5kb
Read depth signal is less reliable in events smaller than 5 kb [16]. We removed all MCNVs
under 5 kb in length from the callset, so they will not appear in the VCF file. We report
MCNVs of greater than 5 kb with the “MULTIALLELIC” filter tag. Therefore, all MCNVs in the
final callset will have a length greater than 5 kb and be tagged as “MULTIALLELIC”.
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Outlier sample removal
We calculated the distribution of SV counts across all samples stratified by SV type and did
not observe any outlier samples, so no samples were removed due to unusually high or low
SV counts at this stage.

Batch effect correction
We evaluated each variant for batch effects among the 192 batches used for the batched
steps of the GATK-SV pipeline. The filter “VARIABLE_ACROSS_BATCHES” was applied to
variants with statistically significant batch effects.

Details of the statistical methods for batch effect correction can be found in the “Assessment
of batch effects” paragraph in the supplementary methods of Collins et al 2020 [2]. Please
note that PCR-amplified samples are not part of the AoU cohort, and 36,672 pairwise
comparisons were not feasible, so we applied only the one-vs-all comparisons described in
Collins et al.

Mobile element deletions
GATK-SV requires read depth support for biallelic CNVs greater than 5 kb in size; candidate
large CNVs that lack read depth support are retained in the callset but the SV type is revised
to breakend (BND) and the filter “UNRESOLVED” is applied. However, deletions of large
mobile elements, such as LINE1 and HERVK, are not expected to show significant
decreases in sequencing depth due to the presence of reads from other mobile elements
across the genome. To rescue these deletions, records of SV type BND were revised to SV
type DEL if they met the following criteria: overlap annotated mobile elements by greater
than 50%, are less than or equal to 10 kb in size, match the breakpoint orientation indicating
a deletion (STRANDS=+-), and are supported by PE evidence. In addition to being
annotated as DEL in the SVTYPE field in INFO, the mobile element class was annotated in
the ALT field, i.e. DEL:ME:LINE1.

Complex SVs, large inversions, and inter-chromosomal translocations
curation

Translocation sensitivity
To improve the sensitivity for inter-chromosomal translocations (CTX) in this callset, we
re-evaluated the raw translocation calls from Manta [4]. We clustered the translocation
variants across batches of around 500 samples and we retained only the rare variants (<1%
allele frequency). We next removed redundant translocations that were within 100 bp of a
translocation site already called by GATK-SV within the batch. We manually reviewed the
discordant paired end read (PE) evidence for each non-reference genotype as described
below. Translocations with sufficient PE evidence were added to the GATK-SV callset.
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Filtering complex SVs and translocations
Specific alignment patterns and discordant paired end reads are expected for complex
(CPX) and translocation SVs [2]. For example, CPX events involving inversions are
expected to have clusters of +/+ and -/- stranded alignments, while those that involve
duplications are expected to have -/+ stranded clusters. In addition, read depth (RD)
changes are expected if large copy number variants (>5kb) are involved. For CTX,
discordant read pairs that link the involved chromosomes are expected.

To improve the precision of the CPX and CTX calls from GATK-SV, the PE and RD evidence
was assessed and compared against these expectations. For each CPX and CTX
non-reference genotype, the PE evidence within a window of 100-1000 bp around the
breakpoints was extracted and compared to the expectation for each sample genotyped as
non-reference. We validated the CPX events involving large CNVs for each sample by
comparing the non-reference genotypes with the CNV calls generated by raw depth
algorithms (i.e. cnMOPS [17] and GATK-gCNV [18]).

For each CPX and CTX genotype, we required PE evidence for all breakpoints and RD
evidence when applicable. Genotypes that did not meet these criteria were revised to no-call
(./.). Sites with at least 50% of samples lacking depth support with PE evidence at some but
not all breakpoints were flagged with the filter status “UNRESOLVED”.

Manual curation of translocations, large inversions, and large complex SVs

To further verify the accuracy of the inter-chromosomal translocations and large inversions
and large complex SVs greater than 1 Mb in size, we manually reviewed the PE evidence
for these SVs. We evaluated the PE evidence for each carrier sample within a window of
100-1000 bp around the breakpoints according to the following criteria:

1. Each breakpoint should have at least 4 supporting discordant pairs
2. All breakpoints in an event should have a sum of at least 10 supporting discordant

pairs
3. The supporting discordant pairs should follow certain patterns:

a. For deletions, the forward-facing (+) reads should be upstream of the
reverse-facing (-) reads, and vice versa for duplications

b. For translocations with both breakpoints on the same side of the centromere
(both on p arms or both on q arms), we expect +- pairs followed by -+ pairs

c. For translocations with breakpoints on different sides of the centromere (one
on a p arm and one on a q arm), we expect ++ pairs followed by -- pairs

4. The supporting reads across each breakpoint should span a minimum of 50 bases
5. Translocation sites should not have a high background level of discordant pairs

(greater than or equal to 4 discordant pairs in at least 10 non-carrier samples). This
filter was applied because translocation events are expected to be rare, and to
remove sites with potential mapping artifacts

Failed genotypes were revised to no-call (./.) and all revisions resulting from manual review
are described in the INFO field MANUAL_REVIEW_TYPE.
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Large CNV curation
We performed a visual inspection of read depth across all 1,322 CNVs (deletions and
duplications) larger than 1 Mb observed in our final VCF using a visualization tool found in
GATK-SV [19]. After inspection, we confirmed the presence of 1,310 CNVs (99.1%). We
observed that 4 of the CNVs larger than 1Mb appeared to have multiple copy states, so we
applied the multiallelic filter tag (MULTIALLELIC). Finally, for 415 CNVs (31.4%) that had at
least one sample with inaccurate breakpoints, we manually reassigned breakpoints using
the more precise sample level depth calls derived from preceding modules in the pipeline.
All revisions resulting from manual review are described in the INFO field
MANUAL_REVIEW_TYPE.

Genomic disorder region re-genotyping
Genomic disorders are human diseases largely arising from recurrent CNVs mediated by
segmental duplications containing homologous sequences [20]. To improve variant
discovery and genotyping accuracy in known genomic disorder (GD) regions [21], we
applied local depth-based re-genotyping to large CNVs. The purpose of this step is to
ensure that these complex and repeat-mediated events are accurately profiled and not
fragmented into smaller events during variant clustering and defragmentation. Briefly, depth
evidence of all bi-allelic DEL and DUP sites overlapping at least 40% of a GD region were
reassessed to refine breakpoints, remove false positives, and recover false negatives.

Each GD region was padded by 100% of its total length on either side and divided into up to
30 equally-sized bins, which were then genotyped in all samples using the same
depth-based methods as the GATK-SV genotyping module. Existing calls were then
evaluated across the genotyped bins and either removed or revised depending on the extent
of depth support. In addition, samples exhibiting strong depth-based CNV support across at
least 50% of a GD region but without a corresponding CNV call triggered creation of rescued
variants across the supported intervals. However, variant rescue was not performed if the
entirety of the GD region and its flanking regions were fully supported, as these are
evidence of a spanning event that would not correspond to the given GD.

This process was implemented as a fully automated workflow, and a subset of the data was
reviewed manually for quality control. Revisions resulting from manual review are described
in the INFO field MANUAL_REVIEW_TYPE. All DEL and DUP variants with at least 50%
reciprocal overlap of a GD region were manually reviewed and annotated with the GD region
name in the “GD” field if determined to sufficiently match known GD breakpoints.

No-call rate filtering
To further refine the SV sites, we also filtered on the NCR, which is defined as the proportion
of no-call genotypes (./.) among all genotypes. The NCR for each site is annotated in the
INFO field, with the exception of MCNVs, which do not use the genotype field. A filter status
of “HIGH_NCR” was applied to every variant exceeding an NCR cutoff of 5%.
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Reference artifact filtering

We applied the REFERENCE_ARTIFACT filter status to sites at which 99% of samples have
homozygous alternate genotypes.

Zero-carrier site removal

We removed sites from the callset if no carriers remained after filtering.

Structural Variant QC Results
Below we detail several metrics of interest for this SV callset. Figure 4 shows the SV counts,
stratified by SV type, within the callset. In this figure, we include measures from both the
total callset (all variants in the callset, regardless of filter tag) as well as a high-quality callset
composed of only variants with a filter tag of PASS or MULTIALLELIC. The remaining figures
focus on the high-quality callset. Figure 5 shows the distribution of SV counts per genome,
stratified by SV type, in the full cohort and grouped by All of Us genetic ancestry groups (see
Appendix C). Figure 6 shows the distribution of SV lengths for each SV type; the fraction of
SVs decreases with increasing SV size, except for MCNVs, which are always over 5 kb, and
INS, which have peaks representing Alu, SVA, and LINE-1 mobile genetic elements [22].
Figure 7 shows the ratios of homozygous reference, heterozygous, and homozygous
alternate genotypes at each SV site and the fraction of SV sites that are in Hardy-Weinberg
equilibrium.

Additional QC analyses are described in a supplementary document, “Benchmarking and
quality analyses on the All of Us CDRv7 short read structural variant calls,” available in the
User Support Hub [1].
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Figure 4 – SV counts in the complete callset and the high-quality SV callset. We observed
1,817,955 total SVs of which we determined 1,506,805 (82.9%) to be of high quality. (A) The
total callset includes all variants in the callset regardless of the filter status. (B) The
high-quality SV callset only contains variants with the PASS or MULTIALLELIC filter status.
Note that all BND sites have the filter UNRESOLVED, so they are not included in the
high-quality callset.
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Figure 5 – We observed a median of 9,686 high-quality SVs per person, which is consistent
with SVs recently generated on the 1000 Genomes Project samples [23]. We display here
the overall SVs per genome and per SV type per genome in the high-quality callset (A) as
well as stratifying by the All of Us predicted genetic ancestry group in order of prevalence in
the callset (B-H). See Appendix C for the All of Us genetic ancestry groupings. The median
of each distribution is labeled on the plot. As expected, samples in the All of Us
African/African American genetic ancestry group (AFR) had the highest SV counts while
those in the All of Us European genetic ancestry group (EUR) had the lowest SV counts.
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Figure 6 – SV size distribution matches previous expectations with notable insertion peaks
corresponding to Alu, SVA, and LINE-1 insertions. Points represent the fraction of each SV
type occupied by a given size range. Lines represent the rolling 10-bin average (the size
ranges are divided into 150 bins).
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Figure 7 – Among high quality variants, 93.4% are in Hardy Weinberg Equilibrium (HWE).
Of the 5.14% that fail, most of these failures appear to be driven by a bias towards
genotyping variants as heterozygous. For this calculation, we included only the 94,181
unrelated samples and only biallelic SV sites.
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Known Issues
The issue below applies to the CDRv7 SV supplemental dataset. We have provided
suggested actions for researchers to workaround the issues and provided remediation plans
when necessary. Sample lists relevant to these issues can be found in the User Support
Hub [1].

Known Issue #1: Small subset of samples missing
corresponding CDR data
Three srWGS SV off-cycle samples are missing their corresponding CDR data. The affected
participants are consented to appear in the genomic data.

Affects:
● SV variant files: joint-called VCF

Suggested action:
● If you are not using CDR data (e.g., surveys, EHR), then no action.
● Otherwise, remove samples without corresponding CDR data. We will provide the

lists of srWGS off-cycle SV samples without corresponding data in the CDR.
Remediation:

● We will provide lists of srWGS off-cycle SV affected samples through the CDR.
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Appendix A: srWGS Structural Variant Pipeline
The GATK-SV pipeline was applied to detect SVs from srWGS data [2]. GATK-SV is an
ensemble method which applies multiple SV callers to increase sensitivity and leverages
different types of evidence to refine SV calls and remove false positives. The SV callers
used for this callset were Manta [4] and Wham [5] to leverage PE and split-read (SR)
evidence, MELT [6] to specifically target mobile elements, and GATK-gCNV [18] and
cn.MOPS [17] to detect large copy-number variants (CNVs) from read depth (RD) evidence.
Following candidate SV discovery by these algorithms, GATK-SV re-evaluates the PE, SR,
RD, and B-Allele Frequency (BAF) evidence for each variant from the raw reads to improve
precision. Each candidate SV is jointly genotyped in every sample in the cohort, and then
SV signatures are integrated to resolve complex variants involving more than one SV type.
An overview of the GATK-SV algorithms and evidence types can be found at [24], and
details of the method can be found in Collins et al 2020 [2]. Code and technical
documentation can be found on GitHub (https://github.com/broadinstitute/gatk-sv). This
includes automated workflows written in Workflow Definition Language (WDL) [25].

Notable improvements to the GATK-SV pipeline since the CDRv7 srWGS SV release
include:

● More precise SR-based genotyping and breakpoint determination for INS variants
● Refined functional consequence annotations for CPX variants
● Added annotations of allele frequency from gnomAD-v4.1 SVs for variants present in

both callsets [26]
● Improved the depth-based genotyping method for very large CNVs to address an

issue observed and manually fixed in the v7 srWGS SV callset
● Performance and scaling enhancements

The full release history for GATK-SV can be found at
https://github.com/broadinstitute/gatk-sv/releases.

Figure 1 depicts the steps of the pipeline as it was run in AoU. Table A.1 provides further
details on the software versions and how the steps were run. The software versions vary
from step to step because the latest version of each workflow available at the time was used
in order to incorporate the latest improvements. The main pipeline modules were run as
Terra workflows, in which case the GitHub release version and entity to which the workflow
was applied (sample, arbitrary partition of samples, batch, cohort) is noted. Steps for which
there was not an established workflow, such as QC and batching, were performed in Jupyter
notebooks in Terra in Python.

Table A.1-- GATK-SV Pipeline Versions and Notes

Workflow/Step Name Version Used Entity Notes

Sample selection Notebook See Sample Selection

GatherSampleEvidence v0.24-beta Sample SV callers used: Manta, Wham, and
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MELT. All 88,882 samples completed
this step, with a 0.00% initial failure rate.

EvidenceQC v0.26.6-beta Arbitrary
partition
of
samples

Run on arbitrary partitions of samples.

Single sample QC Notebook See Single Sample QC

Batching Notebook See Batching

TrainGCNV v0.24-beta Batch Batches of samples were created
according to the scheme described in
the main text under Batching

GatherBatchEvidence v0.26.7-beta Batch Depth-based CNV callers used: GATK
g-CNV and cn.MOPS.

ClusterBatch v0.25.1-beta Batch

PlotSVCountsPerSample v0.27.1-beta Batch

SubsetVcfBySamples v0.27.1-beta Batch We removed the 11 significant outliers
identified for duplication and deletion
counts (nIQR cutoff = 10).

GenerateBatchMetrics In
development
(git commit
769811f2)

Batch This version has since been merged
and released as v0.28-beta

FilterBatchSites v0.24.3-beta Batch

PlotSVCountsPerSample v0.27.1-beta Batch No SV count outliers observed.

FilterBatchSamples v0.26.10-beta Batch No outlier samples were removed at this
stage (nIQR cutoff = 10000).

MergeBatchSites v0.24-beta Cohort For cohort-level steps, data from all
samples across all batches was
merged.

GenotypeBatch v0.28.1-beta Batch

RegenotypeCNVs v0.28.1-beta Cohort

CombineBatches v0.24-beta Cohort

ResolveComplexVariants v0.28.2-beta Cohort

GenotypeComplexVariants In
development
(git commit
424ca4f)

Cohort A developmental version of
GenotypeComplexVariants was used for
improved scaling
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CleanVcf v0.28.3-beta Cohort

Filtering and refinement Multiple steps Cohort See Joint Callset Refinement & QC.
Filtering and refinement was performed
in a series of workflows and notebooks.

AnnotateVcf In
development
(git commit
71e73c6)

Cohort A developmental version of AnnotateVcf
was used for improved scaling
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Appendix B: Overall precision and recall after SL
filtering
Table B.1 summarizes performance after SL filtering across SV classes. Overall
recall/precision were 0.646/0.926 in the training set and 0.648/0.927 in the test set with
similar performance observed across the spectrum of SV classes. These results indicate
that the model generalizes accurately to unseen data.

Table B.1 -- Genotype filtering performance after applying SL and NCR cutoffs

Filtering
class

Min
size
(bp)

Max
size
(bp)

SL
cutoff

Corresp-
onding
GQ

Train Test

Recall Precision Recall Precision

Small
DEL

50 500 21 42 0.604 0.964 0.610 0.965

Medium
DEL

500 5,000 11 38 0.759 0.955 0.765 0.955

Large
DEL*

5,000 inf NA NA NA NA NA NA

Small
DUP

50 500 -23 26 0.719 0.910 0.722 0.910

Medium
DUP

500 5,000 1 35 0.621 0.901 0.625 0.900

Large
DUP*

5,000 inf NA NA NA NA NA NA

INS 50 inf -19 28 0.619 0.907 0.619 0.908

INV 50 inf -118 0 0.999 0.994 0.999 0.994

*Large DEL and DUP variants were tested in a separate analysis. The results will be
reported in the supplementary SV QC document, Benchmarking and quality analyses on the
All of Us CDRv7 short read structural variant calls, which can be found on the User Support
Hub [1].
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Appendix C: All of Us genetic ancestry groups
We assigned genetic ancestry labels to all participants with CDRv7 srWGS SNP and indel
data, as described in Appendix A in the CDRv7 QC report [1]. The labeling is based on
gnomAD [26], the Human Genome Diversity Project (HGDP) [27], and the 1000 Genomes
(1KG) [28] genetic ancestry labels (Table C.1).

We used the high-quality set of sites (described in Appendix J in the CDRv7 QC report [1])
and trained a random forest classifier [29,30] on a training set of the HGDP and 1KG sample
variants on the autosomal exome, obtained from gnomAD [31]. This exome was derived
from the exon regions of all autosomal, basic, protein-coding transcripts in GENCODE v42
[32].

We generated the first 16 principal components (PCs) of the training sample genotypes
(using the hwe_normalized_pca in Hail [33]) at the high-quality variant sites for use as the
feature vector for each training sample. We used the truth labels from the sample metadata,
which can be found alongside the VCFs. Note that we do not train the classifier on the
samples labeled as “Other.” We use the label probabilities (“confidence”) of the classifier on
the other ancestries to determine ancestry of “Other”.

To assign genetic ancestry groups for each participant, we project the genotypes at the
high-quality set of variant sites of the All of Us samples into the PCA space of the training
data. We then apply the classifier (see Figure A.1 in the CDRv7 QC report [1]). Since we do
not have truth labels, we can not determine the accuracy of our All of Us predictions.

Table C.1 The All of Us genetic ancestry groups with descriptions

All of Us genetic ancestry
group

All of Us v7 genetic
ancestry group label

Notes

African/African American AFR

Admixed American AMR

East Asian EAS

Middle Eastern MID

European EUR

South Asian SAS

Remaining (Other) OTH Not belonging to one of the
other genetic ancestries or is a
balanced admixture

34

https://support.researchallofus.org/hc/en-us/articles/27633757470228-All-of-Us-Genomic-Quality-Report
https://support.researchallofus.org/hc/en-us/articles/4617899955092-All-of-Us-Genomic-Quality-Report
https://support.researchallofus.org/hc/en-us/articles/27633757470228-All-of-Us-Genomic-Quality-Report


Appendix D: Self-reported race/ethnicity
As seen in Table D.1, the race/ethnicity breakdown of the structural variant genomic data is
similar to all participants All of Us CDR release C2022Q4R9_offcycle. Samples with “Skip”
responses include participants that answered “prefer not to answer”, entered blank text, or
did not respond to the survey question.

*Corresponding survey data are missing for three participants. Please see Known Issue #1
for more information.

Table D.1 -- Self-reported Race/Ethnicity breakdown of the genomic data
Self-reported Race/Ethnicity srWGS SV counts (%)

Asian 2,888 (2.90%)

Asian, White 384 (0.40%)

Black 22,446 (22.90%)

Black, White 627 (0.60%)

Hispanic 16,778 (17.10%)

Hispanic, White 1,324 (1.40%)

MENA 499 (0.50%)

Other 2,968 (3.00%)

Skip 2,150 (2.20%)

White 47,873 (48.90%)

Total 97,937 (99.99%)*

35


