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Introduction
Widespread benchmarking of structural variants (SVs) from short-read whole genome
sequencing (srWGS) remains a significant challenge for the field of human genetics. The All of
Us cohort of samples with srWGS SV data is unique in the availability of matched genomic
datasets (i.e. single-nucleotide variant [SNV] arrays and long-read genome sequencing
[lrWGS]). There also exists a number of intrinsic measures that can be used to assess the
technical quality of a dataset (e.g. comparisons to external datasets, assessments of inherited
variation, comparison of allele frequency spectra and variant size distributions, and population
genetic principles such as Hardy-Weinberg Equilibrium). Combining these methods, we assess
7 measures of technical quality for the srWGS SV All of Us dataset, described in the SV
Genomic Research Data Quality Report [1] and this supplemental document.

In the SV QC Report [1], we describe:
1. Variant counts (cohort-wide and per-sample) relative to gnomAD V2 [2] and the most

recent 1000 Genomes Project high-coverage srWGS callset [3]
2. Size distribution of SVs
3. Hardy-Weinberg equilibrium

In this supplemental benchmarking report, we additionally describe:
4. Linkage disequilibrium with srWGS SNVs and Indels
5. Patterns of evolutionary constraint
6. Benchmarking against lrWGS
7. Benchmarking against microarrays

Comparisons to SNVs and Indels

Linkage disequilibrium with SNVs and Indels

Data and Methods



Given that most common SVs segregate on haplotypes with distinct sets of SNV and small
insertion and deletion variant (indel) calls, the presence of nearby SNVs and indels in linkage
disequilibrium (LD) with our SV calls is an indicator of SV callset quality.

To quantify this, we computed LD between the srWGS SV joint callset and SNVs and indels
from the srWGS SNP and Indel joint callset. We conducted this analysis in Hail v0.2.130 in a
Python notebook backed by a Spark 3.3.0 cluster with 12 non-preemptible and 24 preemptible
worker nodes. Due to the high computational resources necessary for these calculations, LD
analyses were conducted on a subset of 15,001 samples. We analyzed samples from the All of
Us genetic ancestry groups with at least 900 samples in the SV callset: European (EUR;
n=46,549 samples in entire cohort), African/African American (AFR; n=24,349), Admixed
American (AMR; n=15,550), East Asian (EAS; n=2,067), and South Asian (SAS; n=934).
Genetic ancestry labels for each participant are based on the srWGS SNP and Indel dataset,
described in the SV QC Report Appendix C [1]. We randomly selected 4,000 samples from each
genetic ancestry group that contained more than 4,000 samples in the cohort (AFR, AMR, and
EUR) and selected all of the samples from the EAS and SAS ancestry groups to get a total
subset of 15,001 samples. We analyzed LD between all SVs with PASS filter status and SNVs
and indels with PASS filter status that had a minor allele frequency of at least 1% in either the
full cohort or one of these genetic ancestry groups.

LD between the callsets was computed according to the same methods used for the All of Us
CDRv7 benchmarking and quality analyses [4]. To recap, we computed LD by first constructing
two matrices:

1. An m x n matrix A where m is the number of SV calls after minor allele frequency
filtering, n is the number of samples in the cohort or genetic ancestry group, and Aij is the
number of alternate alleles for sample j at SV site i.

2. An s x n matrix B where s is the number of SNVs and indels after minor allele frequency
filtering and Bij is the number of alternate alleles for sample j at SNV/indel site i.

We defined LD as the R2 of alternate allele dosage between each pair consisting of one SV site
and one SNV site [5]. We calculated R2 values by computing the matrix multiplication ABTafter
mean-centering and variance-standardizing each matrix, and then squaring each entry of the
resulting correlation matrix. We limited computation to SV/SNV pairs where the SNV was within
1 megabase of the SV by defining a window extending from 1 megabase (Mb) before the start
position (POS) of the SV to 1 Mb after the end position (END). Then, correlations were
computed between each SV and the SNVs located within the window using Hail’s block matrix
sparsification functionality. For each SV we identified the SNV with which the R2 value was
maximized. Given that previous LD analyses of SVs have shown that LD was much weaker for
SVs that occurred in repetitive sequence contexts [2], we further subdivided the results
according to the genomic context in which the SV occurs; we classified each SV as occurring in
segmental duplications (SD), simple repeats (SR), other repeat-masked sequence (RM), or the
unique sequence (US) outside of RM using methods from Zhao et al. 2021 [6].



Results
A violin plot of the maximum SNV or indel R2 for each SV appears in Figure 1, broken out by SV
type. The median R2 of the SNV in highest LD with each SV is 0.73 for insertions, 0.14 for
duplications, 0.80 for deletions, 0.88 for complex events, and 0.82 for inversions. Similar results
hold when samples are subset into genetic ancestry groups (Figure 2). Figure 3 shows the
results of stratifying events of each SV type by the genomic sequence context it appears in. The
median R2 value of the SNV in highest LD with each SV, broken into SV types within each
genomic sequence context, is given in Table 1. There were no inversions annotated as
belonging to simple repeats in the callset. Stratifying by sequence context shows that the low
overall LD of duplications was driven by events within SR or SD sequence contexts (median
maximum R2 in SD: 0.14; SR: 0.05), while duplication variants within US or RM contexts have
detectable LD comparable to the other SV types (Figure 3; 0.83 median in US, 0.80 median in
RM). It should be noted that biological factors, potentially including increased mutation rates and
recombination rates in repetitive sequence contexts such as simple repeats and segmental
duplications, as well as technical factors such as the difficulty of discovering SVs and SNVs in
those contexts, contribute to the expected lower LD scores identified in repetitive regions of the
genome. As illustrated in Figure 4, in unique sequence contexts all variant classes have high
median LD with a nearby SNV (INS: 0.93; DUP: 0.83; DEL: 0.93; CPX: 0.95; INV: 0.71).

Figure 1 – The distribution of maximum SNV-SV R2 values for each SV type. The SV types in
this analysis were: deletion (DEL), duplication (DUP), insertion (INS), complex event (CPX), and
inversion (INV).



Figure 2 – The distribution of maximum SNV-SV R2 values for each SV type, stratified by the
genetic ancestry group of the participant (ALL: all samples; EAS: East Asian; AMR: Admixed
American; AFR: African/African American; SAS: South Asian; EUR: European).

Figure 3 – The distribution of maximum SNV-SV R2 values for each SV type, stratified by
genomic context (SR: simple repeat; SD: segmental duplication; US: unique sequence; RM:
repeat-masked sequence).

Figure 4 – The distribution of maximum SNV-SV R2 values for each SV type when limited to
regions of the genome with unique sequence context, stratified by the genetic ancestry group of
the participant (ALL: all samples; EAS: East Asian; AMR: Admixed American; AFR:
African/African American; SAS: South Asian; EUR: European).



Table 1 – Median SNV-SV R2 value for each SV type, stratified by genetic ancestry groups
and genomic context

SV Type

Genetic
ancestry
group

Sequence
Context DEL DUP INS CPX INV

ALL US 0.921 0.828 0.928 0.945 0.709

RM 0.916 0.800 0.906 0.910 0.890

SD 0.504 0.138 0.827 0.868 0.848

SR 0.498 0.051 0.160 0.599 N/A

AFR US 0.942 0.827 0.940 0.939 0.890

RM 0.931 0.842 0.919 0.923 0.931

SD 0.537 0.154 0.826 0.914 0.854

SR 0.462 0.080 0.181 0.630 N/A

AMR US 0.919 0.832 0.922 0.932 0.777

RM 0.905 0.790 0.900 0.898 0.849

SD 0.460 0.131 0.806 0.873 0.847

SR 0.470 0.036 0.128 0.619 N/A

EAS US 0.908 0.822 0.895 0.902 0.602

RM 0.877 0.761 0.873 0.916 0.775

SD 0.400 0.132 0.788 0.713 0.840

SR 0.380 0.028 0.107 0.395 N/A

EUR US 0.921 0.845 0.924 0.916 0.628

RM 0.900 0.776 0.903 0.915 0.843

SD 0.482 0.150 0.827 0.804 0.863

SR 0.469 0.030 0.114 0.634 N/A

SAS US 0.921 0.835 0.920 0.935 0.688

RM 0.900 0.801 0.901 0.914 0.879

SD 0.451 0.140 0.817 0.869 0.821

SR 0.440 0.048 0.134 0.539 N/A



Patterns of evolutionary constraint

Methods
Patterns of evolutionary constraint across genes have been previously examined in SNVs and
indels and quantified by the loss-of-function observed/expected upper bound fraction (LOEUF)
score [7]. Analyses in gnomAD-SV V2 showed that SVs exhibit similar trends of gene-level
intolerance to variation [2]. To demonstrate that the srWGS SV CDRv7 off-cycle callset exhibits
the same fundamental biological signals, we replicated the methods in Collins et al. 2020 [2] to
examine trends of SV constraint in comparison to SNV constraint. Briefly, we estimated the
depletion of rare SVs per gene compared to the expected count of SVs per gene, using a
negative binomial regression model.

We subsetted the VCF to sites with a PASS filter status, then to the maximal set of 94,181
unrelated samples in the CDRv7 off-cycle srWGS SV callset. Next, we computed the number of
rare (AF <1%) SVs observed per gene for all autosomal protein-coding genes, across four
different classes of functional consequences. The functional consequence categories used in
this analysis were predicted loss-of-function (pLOF), copy gain duplication (CG, in which an
entire gene is duplicated), intragenic exonic duplication (IED, in which intact exons are
duplicated without disrupting coding sequence), and spanning inversion (INV, in which an
inversion spans an entire gene).

Based on gene characteristics and these observed counts, we trained a negative binomial
regression model to predict the expected counts of SVs of different functional classes for each
gene. We incorporated the following factors into the model: gene length, total and median exon
length, total and median intron length, number of exons, number of introns, and the proportion
of the gene overlapped by segmental duplication regions. We trained the model on the genes
exhibiting relatively neutral selection in the 5th to 9th LOEUF deciles. We then applied the
model to estimate the expected number of gene-disrupting SVs in each functional category
across all autosomal protein-coding genes in GENCODE v39 [8].

We binned genes by LOEUF percentile (resulting in 100 bins containing an average of 189
genes each) and compared the estimated expected counts of rare SVs of each functional class
for the genes in each bin to the observed counts. Finally, we used a two-sided Spearman’s rank
correlation test to assess the correspondence between SV and SNV constraint across all 100
bins of genes.

Results
Figure 5 shows the results of the constraint analysis for rare coding SVs across four different
classes of SV functional consequences representing a spectrum of expected impact on the
protein. As expected, the depletion of rare pLOF SVs shows the strongest concordance with the



depletion of pLOF SNVs as measured by LOEUF (pLOF Spearman correlation test, ⍴=0.95,
P<10-100). There is also a strong relationship between CG SV constraint and LOEUF (CG
Spearman correlation test, ⍴=0.87, P<10-100) and a weaker but significant relationship between
IED SV constraint and LOEUF (IED Spearman correlation test, ⍴=0.74, P<10-100). There is not a
significant correlation between INV constraint and LOEUF (INV Spearman correlation test,
⍴=0.15, P=1.47x10-1). These results recapitulate the findings in Collins et al. 2020 [2] and show
that our findings reflect previously established patterns of evolutionary constraint.

Figure 5 – Comparing pLOF SNV constraint to binned SV constraint in four different SV
functional classes: A) predicted loss-of-function (pLOF), B) copy gain duplications (CG), C)
intragenic exonic duplications (IED), and D) inversions that span an entire gene (INV). Points
represent binned observed vs. expected SV count ratios compared to the LOEUF percentile
from SNVs. Solid lines represent 21-point rolling means. The results of the two-sided Spearman
correlation test (the correlation ⍴ and the P-value) are superimposed on each panel.



Comparisons to orthogonal data types

Benchmarking against long-read PacBio sequencing

Data and methods
We evaluated passing non-reference SV genotypes based on evidence derived from lrWGS.
The lrWGS SV calls using existing algorithms can confirm SV events with accurate breakpoint
resolution, but often miss large insertions and inversions near the lrWGS read size, as well as
large copy number variants (CNV) that require read depth evidence to detect. Read depth
signatures are used extensively in the GATK-SV short-read pipeline but not in existing lrWGS
algorithms. Because of this reduced sensitivity of lrWGS SV calling to large SVs, variants larger
than 5 kilobases (kb) were excluded from this analysis.

We performed this analysis on a subset of 97 samples with matched lrWGS data that were held
out from training of the GQ filtering model used for refinement of the SV callset (see srWGS SV
QC Report, Genotype Filtering [1]). For each sample, passing non-reference genotypes for
eligible variants (SV type DEL, DUP, INS, or INV, with PASS filter status, below 5 kb in length)
were assessed against lrWGS using the lrWGS validation tool VaPoR [9] and their overlap with
SV calls from lrWGS data from the tools PAV [10], PBSV [11], and sniffles2 [12]. Duplications
present a challenge to overlap-based methods of variant matching, as they can be called either
as INS or DUP types, with INS calls either at the 5’ or 3’ end of the duplicated sequence. In
order to avoid such complications with variant representation, the evaluated calls were grouped
into three main classes: insertions (encompassing insertions and duplications), deletions, and
inversions prior to variant matching. srWGS variants were matched with lrWGS variants of the
same comparison class by requiring 10% reciprocal overlap and 50% size similarity. This
analysis was performed using the GATK SVConcordance tool [13].

Results
The validation callset generated by GATK-SV included 768,579 total non-reference calls
comprising 58,910 unique DEL, DUP, INS, and INV variants under 5kb. These calls were strongly
supported by lrWGS, with 674,190 (88%) of the PASS genotypes confirmed by at least one
lrWGS tool. Figure 6 shows the distributions of support from lrWGS for insertion and deletion
SVs, and Figure 7 shows them for inversions. For each intersection, the number of calls is
shown with variant size and GQ distributions. Note that the GQ recalibration model was trained
on a set of independent samples using lrWGS support criteria. Therefore, a higher GQ reflects
that the call was similar to calls in the training set with support from VaPoR and at least one of
the three lrWGS SV algorithms (see srWGS SV Genotype Filter section of the Genomic
Research Data Quality Report [1]).



There was a high degree of consensus among the lrWGS callers, with only 65,744 (9.8% of
confirmed) srWGS SV calls supported by just one lrWGS SV caller and 565,608 (84%)
supported by at least three. Calls with no lrWGS support had overall lower genotype quality
(GQ) scores (median 47) compared to supported calls (median 89), which is consistent with
expectations. Notably, PBSV was the most consistent with srWGS SV calls from GATK-SV,
supporting 629,779 (93% of confirmed) srWGS calls with a median GQ of 89, compared to the
remaining 44,411 lrWGS supported calls with a median GQ of 55.

The distribution of calls produced by the three non-depth based srWGS SV calling tools used by
GATK-SV (Manta [14], Wham [15], and MELT [16]) and the fraction of calls with lrWGS support
for each is shown in Figure 6B. Overall, Manta produced 622,921 (81%) of passing calls, 88% of
which were supported by at least one lrWGS SV discovery method. In addition, MELT
contributed 150,072 (20%) of the calls with 87% lrWGS support. Wham is utilized in this pipeline
to access a subset of small duplications that are missed by other algorithms, with 99,718
variants retained after filtering (13% of total) and 87% lrWGS support. Similar to insertion and
deletion SVs, inversions exhibited a high degree of support from lrWGS, with 859 of 889 (97%)
validated (Figure 7).

Figure 6 – Evaluation of passing srWGS insertion and deletion calls under 5 kb against lrWGS
tools. The insertion class encompasses all sequence gain events, including duplications. (A)
Distribution of lrWGS tool support. Filled circles indicate combinations of tools that support the
call counts in each column. Combinations with fewer than 5,000 total calls are omitted for clarity.



Violin plots of genotype quality and log10 of variant length distributions are superposed over
each combination. Total supported calls for each lrWGS tool are plotted at the bottom-left. (B)
Distribution of srWGS tool support. Top panel shows the fraction of calls with support from at
least 1 lrWGS tool. Combinations with fewer than 2,000 calls are omitted.

Figure 7 – Evaluation of passing srWGS inversion calls under 5 kb against lrWGS tools. Data is
plotted as in Figure 6 for insertion and deletion calls but with all non-empty combinations shown.

Benchmarking large CNVs against microarrays

Data and Methods

In a randomly-selected subset of 10,000 samples, we evaluated all deletions and duplications
greater than 10 kb and less than 10 Mb in length on the autosomes using array intensity data
from the LRR field of the array VCFs (available on the Researcher Workbench and described in
‘How the All of Us Genomic Data are Organized’). To conduct this evaluation we used the
GenomeSTRiP IntensityRankSumAnnotator (IRS) tool [17,18]. The IRS tool compares the array
probe intensity values between samples predicted to carry the CNV and those predicted to be
non-carriers (according to genotypes in the SV VCF), using all probes that are within the CNV
interval. Using a non-parametric test, the IRS tool assigns a p-value to each CNV which

https://support.researchallofus.org/hc/en-us/articles/4614687617556-How-the-All-of-Us-Genomic-data-are-organized


indicates if the CNV genotypes are supported by the intensity data. In addition to using site-level
p-values, the authors of the test recommend [17,18] using IRS to calculate a callset level false
discovery rate (FDR) by computing , where M is the number of sites where the IRS2 *  𝑀

𝑁

p-value is greater than 0.5 and N is the total number of sites. CNVs greater than 10 Mb were
excluded due to the computational requirements required to evaluate array concordance using
these methods and the fact that the majority of these large events are likely to be somatic
events that can be challenging to confirm. We note that performance of this validation can be
compromised for smaller CNVs if there is insufficient probe density in the CNV region on the
microarrays, which is a common challenge for CNVs less than 20 kb in size. Nonetheless, this
validation can still be informative in the 10-20 kb size range for many regions of the genome.

We ran the IRS test on all samples at each site. The IRS test requires that an intensity value be
present for all samples. Therefore, if a sample had a missing data value for one or more of the
probes covered by the CNV interval, we set the intensity value to a random value such that the
rank of the inserted value within the cohort would be uniformly distributed. This was achieved by
choosing another sample at random from the set of samples with non-missing values for that
probe and setting the missing sample’s intensity value to that of the randomly chosen sample.
The substitution of missing data points with randomly chosen values was necessary for testing
the callset against the entire cohort, but could inflate the FDR estimates provided by the IRS
test.

Results
After removing 1,654 CNV sites which did not overlap any array probes and could not be tested,
34,648 autosomal CNVs of size 10 kb to 10 Mb were evaluated using this test, including 20,347
deletions and 14,301 duplications. 215 out of 20,347 deletions had an IRS p-value greater than
0.5, resulting in an estimated FDR of 2.11% for all deletions tested using the callset-wide
evaluation procedure described above. 93.5% of deletions were validated using a more
stringent p-value cutoff of 0.01, which was the threshold used to select sites for molecular
validation based on IRS results in a previous study [17]. The results for deletions in different size
ranges are shown in Table 2.

Table 2 – Deletion SV array validation results, stratified by SV size

Size range Number of sites
included

Estimated Callset FDR P-value < 0.01

10-20kb 9,097 2.85% 8166 (89.8%)

20-50kb 5,414 1.74% 5,166 (95.4%)

50-100kb 2,673 1.57% 2121 (97.2%)

100kb-1Mb 3,008 0.87% 2,956 (98.3%)

1-10Mb 66 0% 66 (100%)



Out of the 14,301 duplications evaluated, 374 had a p-value over 0.5, resulting in an estimated
callset FDR of 5.23%. 90.0% of duplications validated at the 0.01 p-value threshold. Duplication
results by size range are shown in Table 3. As in the discussion of array benchmarking for the
CDRv7 release [4], we note that 6.9% (297 / 4,313) of duplications and 6.2% (530 / 8,567) of
deletions between 10 kb and 20 kb span only one probe, reducing the statistical power of the
IRS test to validate these events at the p-value < 0.01 level. Overall, these results show that
large CNVs in this callset were strongly supported by microarrays, with a very low estimated
FDR for both large deletions and large duplications.

Table 3 – Duplication SV array validation results, stratified by SV size

Size range Number of sites
included

Estimated Callset FDR P-value < 0.01

10-20kb 4,313 6.77% 3,491 (80.9%)

20-50kb 3,948 4.91% 3,630 (91.9%)

50-100kb 2,319 4.31% 2,201 (94.9%)

100kb-1Mb 3,443 4.12% 3322 (96.5%)

1-10Mb 166 1.20% 164 (98.8%)
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