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Overview
This document details the All of Us Genome Centers (GC) and Data and Research Center
(DRC) quality control (QC) steps for genomic data in the research pipeline.  This pipeline
removes or flags samples and variants in the genomic data that fail quality thresholds. We apply
these QC steps in the research pipeline before we release the genomic data for research use.
We, the All Of Us Data and Research Center (DRC), only describe QC processes that are
performed analytically (i.e., after the sample has been genotyped and sequenced).  All
descriptions and results are limited to the Q2 2022 release made available in the Researcher
Workbench June 22, 2022, which contains 165,127 array samples and 98,590 whole genome
sequencing (WGS) samples.  The samples in the genomic data correspond to the All of Us
Curated Data Repository (CDR) release C2022Q2R2.  These pipelines are automated unless
otherwise noted.  This document covers all genomic data types made available to researchers
at this time including small variants (SNPs and Indels) for arrays and short-read whole genome
sequencing (WGS).

Audience: This document is intended for researchers using, or considering the use of,
the genomic data in the Researcher Workbench (RWB).  This document assumes knowledge of
sequencing, genotype arrays, common genomic data QC approaches, and the variant file
formats released in All of Us.  We recommend that at a minimum researchers read the Known
Issues section below, even if they are not as concerned with the QC process.

Notes:
● Details of the processing (e.g., algorithms) are out of scope for this document.
● The QC process for extracting and cataloging DNA samples is out of scope for this

document, since this process happens before genotyping and sequencing.
● Failed samples are not reported here unless otherwise noted.
● Raw data and sample lists will be published to the User Support Hub [1] for researchers.

This document does not contain locations of the data.
● The genomic data mentioned in this document requires Controlled Tier access to view.

To register for access, please go to https://www.researchallofus.org/register/

Executive Summary
On June 22, 2022, the All of Us Research Program released the genomic data of 98,590 WGS
and 165,127 array samples in the Researcher Workbench (RWB) for use by users registered for
Controlled Tier access.  Variant calls from both WGS and arrays (over 702M WGS SNP and
indel sites; over 1.8M array SNP and Indel sites), raw data (IDAT files for array data and CRAM
files for WGS data), and auxiliary files (predicted ancestry, relatedness/kinship scores, functional
annotation, and flagged samples) are available in the RWB (access required).  Quality control
processes, performed both independently and across samples, indicate that these data are
ready for general analysis.  We suggest researchers, at a minimum, read the Known Issues
section below before using the data.

https://www.researchallofus.org/register/


Introduction
All of Us (AoU) is collecting biospecimens and generating genomic data for all participants who
have consented among its target of 1,000,000 participants. As the program continues, the DRC
will periodically release genomic data - in sync with planned CDR release timelines. This
document describes the second release of genomic data to All of Us researchers (“Q2 2022
release”) made available in the RWB on June 22, 2022, which contains 165,127 array samples
and 98,590 WGS samples, from a diverse set of participants (see Appendix A and Appendix K).
All of the released samples with genomic data have at least one other data type (e.g., survey
data) that can be joined for analysis (see Appendix L).  In this document, we describe the QC
processes applied to both the genotyping array (“array”) and whole genome sequencing data
(WGS).  We describe which processes were performed at the GCs and which were performed
at the DRC (see Appendix M), but for most researchers this demarcation has no practical
significance.

We have split the QC into three conceptual areas:
1. Consistency -- The uniformity of protocols at each GC that reduce the probability of

batch effects and that normalize the data across GCs.
2. Single Sample QC -- QC processes run for each sample independently.  These catch

major errors, such as sample swaps or sample contamination.
3. Joint Callset QC (WGS only) -- QC processes executed on the joint callset, which uses

information across samples to flag samples and filter variants.

We have also performed data validation experiments, such as replicating GWAS results, but the
results are shown in other, upcoming documentation (see User Support Hub [1] and Tutorial
Workspaces in the RWB, both require access).

Consistency across Genome Centers
The genome centers (GCs) established a consistent sample and data processing protocol for
array and WGS data generation to attenuate the likelihood of batch effects across GCs.
Descriptions in this document, for both QC and sample processing, apply to all GCs unless
otherwise noted.

Arrays
The GCs generate variant calls (VCFs) that are submitted to the DRC.  The GCs use the same
lab protocols, scanners, software, and input files:

● GCs generate raw intensity data (.idat) using the same hardware (iSCAN scanners from
Illumina) -- These files will still contain biases across GCs.



● GCs normalize the raw intensity data onto the same scale. This process yields a
normalization transform for probe intensities, which are one of the inputs for variant calls.
This transform takes into account variation across GCs.  Each GC will use the derived
clusters to normalize their IDAT files and generate variant calls.

● GCs use identical pipelines to generate VCFs -- This includes both identical pipeline
versions and input parameters, where applicable.  As a result, the VCFs contain the
same information, regardless of GC, including metadata about inputs.

See Appendix J for details on the processing of arrays. Raw array data for each sample in IDAT
format are available in the Q2 2022 release for analysis in addition to the variant calls.

WGS
The GCs use the same protocol for library construction (PCR Free Kapa HyperPrep), sequencer
(NovaSeq 6000), software (DRAGEN v3.4.12), and software configuration.  The software
produces the metrics that are consumed by the sample QC processes.  For more information
about the sequencing processes used by the GCs, see previous work [2] and the NIH All of Us
Research Program’s Return of Genetic Results FDA IDE (G200165). The raw WGS reads for
analysis are available in the Q2 2022 release in CRAM data format in addition to the variant
calls.

Single Sample QC
The processes documented in this section test each sample, independently.  If a sample fails
this test, then it is excluded from the release and is not reported in this document.  These tests
detect sample swaps, cross-individual contamination, and sample preparation errors.  In some
cases, we perform these tests twice for two reasons: 1) to confirm internal consistency between
the GCs and the DRC and 2) to mark samples as passing (or failing) QC based on the research
pipeline criteria.  The single sample QC process accepts a higher contamination rate than the
clinical pipeline (0.03 for the research pipeline versus 0.01 for the clinical pipeline), but
otherwise uses identical thresholds.  The list of specific QC processes and an overview of the
results can be found in Table 1.

Our WGS single sample QC uses the same sequencing process described previously [2]
and in the NIH All of Us Research Program’s Return of Genetic Results FDA IDE (G200165).
The processes described previously include single sample QC processes that are not described
here.  The processes in this document focus on downstream analytical QC processes after a
sample has been sequenced or genotyped.

For more details about the array single sample QC process, including preparation, see
Appendix J.

Table 1 -- Single Sample QC processes

QC process Data types Passing criteria Error modes addressed Q2 2022 release results



Fingerprint
concordance

WGS (uses
Arrays)

log-likelihood ratio > -3 -Sample swaps
-Large amount of sample
contamination

All array and WGS sample
pairs are concordant.

Sex concordance WGS and
Arrays

Sex call is concordant with
self-reported sex at birth.
OR
Self-reported sex at birth
reported as “Other” or was
not reported

-Sample swaps All array and WGS samples
are concordant.

Call rate Arrays > 0.98  (> 98%) -Sample contamination
-Sample preparation error

All array samples meet the
threshold.

Inconsistency across GCs
was discovered.  See the
Call Rate Section and
Known Issues #2

We erroneously failed 2994
array samples, which are not
included in this release.
However, we have included
the corresponding WGS
samples.  See Known Issues
#1.

Cross-individual
contamination
rate

WGS and
Arrays

WGS:  < 0.03 (< 3%)
Arrays: None (Reported
only)

Sample contamination from
another individual

All WGS samples meet the
threshold.

For arrays, we only report
the contamination rate, but
do not filter array samples,
since the call rate is a proxy
for high levels of
contamination.

WGS samples with
corresponding arrays that
have a contamination rate
above 10% were not
released.

Coverage WGS ≥ 30x mean coverage

≥ 90% of bases at 20x
coverage

≥8e10 aligned Q30 Bases

≥ 95% at 20x in regions of
the 59 AoU Hereditary
Disease Risk genes
(AoUHDR) See Appendix F
for more information

-Sample preparation error
-Poor sensitivity and
precision of variant calling

All WGS samples meet the
thresholds.



Fingerprint Concordance

Method
We filter variant calls to 114 sites (“fingerprint”) for both the array and WGS variants.  We
measure the concordance between the array and WGS data, using a log-likelihood ratio
(fingerprint LOD) based on reads.  We chose the threshold value, -3.0, to split a bimodal
distribution (not shown).  If the calls are not concordant (i.e., the fingerprint LOD does not meet
the threshold), then there has likely been a sample processing error.  A detailed description of
fingerprint concordance is described in the Genome Analysis Toolkit documentation. [3]

We call the fingerprint concordance using Picard (version 2.23.9) with the following parameters:

Parameter Value

program name “CheckFingerprint”

INPUT The WGS cram to check concordance

REFERENCE_SEQUENCE “gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_a
ssembly38.fasta”

GENOTYPES VCF from corresponding array file

HAPLOTYPE_MAP “gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_a
ssembly38.haplotype_database.txt”

IGNORE_READ_GROUPS “true”

SAMPLE_ALIAS Chipwell barcode from the header of the array file (array file
passed in the GENOTYPES parameter)

Note: Quoted parameters are exact values, but quotes were not included in the actual call to the
tool.

Results
All samples in the Q2 2022 release passed the fingerprint concordance check.  We were able to
run fingerprint checks on WGS samples using the arrays, but 2,994 of the corresponding array
files were not included in this release (see Known Issue #1)
As seen in Figure 1, the passing samples exceeded the threshold. Fourteen samples had a
fingerprint LOD [3] less than 45 and the minimum fingerprint LOD was 13.



Figure 1 -- Distribution of the Fingerprint LODs for WGS Q2 2022 samples

Sex Concordance
We checked the computed sex against the self-reported sex at birth for concordance (see
Appendix H).  If the two sources were not concordant, we assumed a potential sample swap,
removed the sample, and investigated the source of the swap.  If we do not have a “male” or
“female” for the sex assigned at birth, because the participant reported it as “Intersex”, “I prefer
not to answer”, “none of these fully describe me”, or skipped the question, we passed the sex
concordance check for that sample.

WGS

Method
We compare variant and ploidy calls for chromosome X and Y against the self-reported sex
assigned at birth for the sample.  We check the sex ploidy call (e.g., XY or XX) from the
DRAGEN pipeline (v 3.4.12) and use heterozygous chrX variant calls from peddy [4].  If the
concordance test fails against either of these calls, the sample fails QC and is not included in
the release.  If we do not have a “male” or “female” for the sex assigned at birth, because the
particpant reported it as “Other” or skipped the question, we will pass sex concordance
regardless of the information from peddy and DRAGEN.

DRAGEN invocations include a wide breadth of functionality, including ploidy calls (see
Appendix G for the parameters).



The DRAGEN pipeline outputs a single sample VCF, which is primarily used in the clinical
pipeline (for individual samples), but we use it for our call to peddy.  We call peddy with the
following parameters:

Parameter Value

vcf Single sample VCF from DRAGEN (hard-filtered)

Pedigree file We create this file dynamically based on the single sample and its
sex call.  Please note:  This implies that we do not use pedigree
information in our peddy call.

Results
Since we catch sex concordance failures before including a sample in the release, all WGS
samples in the Q2 2022 release passed a sex concordance check.  Note that 1.5% of samples
passed the sex concordance check due solely to their answer on the self-reported sex assigned
at birth (“I prefer not to answer”, “none of these fully describe me”, “Intersex”, or skipped the
question).  See Appendix H for a full breakdown of self-reported sex assigned at birth.

Array

Method
We call the gencall tool [5] v3.0.0 to make a call on the sex of the sample.  We use the Picard
2.26.0 tool, CollectArraysVariantCallingMetrics [6], to perform the actual concordance check
against the self-reported sex assigned at birth.  If we do not have a “male” or “female” for the
sex assigned at birth because the participant reported it as “Other”, “Intersex”, or skipped the
question, we will pass sex concordance regardless of the sex call from the array.

To generate sex calls from the array, we call gencall from the Illumina Array Analysis Platform
Genotyping Command Line Interface (iaap-cli):

Parameter Value Notes

Tool name “gencall”

Manifest file Bead pool manifest (BPM) Illumina-supplied file that contains
metadata (alleles, mapping information,
source, etc.) for all of the probes on the
genotyping array.

Cluster file Cluster file (EGT) Used for normalization of intensities
across GCs

-f Location of the IDAT (.idat) files

-i “1” Algorithm version



--gender-estimate-call-rate-
threshold

-0.1 This effectively disables the sex
estimation.

To ensure concordance with the self-reported sex assigned at birth, we call
CollectArraysVariantCallingMetrics with the following parameters from the Picard toolkit:

Parameter Value

Tool name “CollectArraysVariantCallingMetrics”

INPUT Array single sample VCF

DBSNP "gs://gcp-public-data--broad-references/
hg38/v0/Homo_sapiens_assembly38.db
snp138.vcf"

Results
Since we catch sex concordance failures before including a sample in the release, all array
samples in the Q2 2022 release passed a sex concordance check.  Note that 1.5% of samples
passed the sex concordance check due solely to their answer on the self-reported sex assigned
at birth (“I prefer not to answer”, “none of these fully describe me”, “Intersex”, or skipped the
question).  See Appendix H for a full breakdown of self-reported sex assigned at birth.

Call Rate (Array only)

Method
The call rate is the number of successful variant calls divided by the number of probes.  We
invoke the gencall tool [5] v3.0.0, as described above in Sex Concordance, which generates
both sex calls and the call rate.  We also invoke CollectArraysVariantCallingMetrics with the
same parameters to extract the call rate metric from the VCF header.

We applied a threshold of 0.98 to the call rate for inclusion in the Q2 2022 release, but we
believe that we were overly-aggressive filtering samples due to an internal inconsistency with
call rate methodology applied across GCs (see Known Issue #2).

Results
As seen in Figure 2, we did not include any samples that were below the call rate threshold of
0.98.  During the generation of the release, we discovered an inconsistency across GCs in the
calculation of call rates.  The methodology was updated to make the GCs consistent, but this
resulted in two separate call rate populations, as seen in Figure 2.  These dual peaks hold for all
three GCs, as seen in Figure 3.



Figure 2 -- Histogram of the array call rate for the Q2 2022 release.  Note that a correction in call rate calculation led
to two peaks in the histogram.

Figure 3 -- Call rate across each GC.  Note that the bimodal distribution is seen across centers.

Cross-individual Contamination Rate
For all samples, we estimate the proportion of data coming from an individual other than the one
being processed, referred to as the contamination rate. We follow two separate processes for
WGS and arrays.  Samples can only fail a contamination rate check for WGS. For arrays, as the



contamination rate increases, we expect a lower call rate. We fail array samples for a call rate
that does not meet the threshold.

WGS

Method
We estimate the percent contamination from another individual by counting the number of reads
at common homozygous alternate SNP sites.  If there is a small amount of cross-individual
contamination, we expect to see small numbers of reads supporting SNPs at these sites.  We
determine the percentage of the sample that may have come from a different individual using
VerifyBamID2 [7], and the DRAGEN 3.4.12 pipeline. Contamination rate is a float value from
0.0 to 1.0, which represents 0 to 100%.

DRAGEN invocations include a wide breadth of functionality, including contamination estimates
(see Appendix G for the parameters).

We use the following parameters for VerifyBamID2:

Parameter Value

NumPC “4”

BamFile WGS cram file

Reference “gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_assembly38.fasta”

UDPath “gs://gcp-public-data--broad-references/hg38/v0/contamination-resources/1000g/1000g.phase3.
100k.b38.vcf.gz.dat.UD”

BedPath “gs://gcp-public-data--broad-references/hg38/v0/contamination-resources/1000g/1000g.phase3.
100k.b38.vcf.gz.dat.bed”

MeanPath “gs://gcp-public-data--broad-references/hg38/v0/contamination-resources/1000g/1000g.phase3.
100k.b38.vcf.gz.dat.mu”

Verbose specified

Results
We did not include any samples with a contamination larger than 0.018 and only three samples
greater than 0.015.  See Figure 4 for the frequency of contamination estimates for samples in
the Q2 2022 release.



Figure 4 -- WGS contamination estimates from both sources (DRAGEN and VerifyBamID2).  DRAGEN rounds the
contamination estimate to three decimal places.  Note the log scale of the counts (y-axis).  Over 88.1% and 90.6% of
WGS samples had contamination estimates lower than 1e-4 by VerifyBamID2 and DRAGEN, respectively.  Any
samples above the contamination threshold are not included in the Q2 2022 release.

Array

Method
We use BAFRegress [8] to estimate the contamination rate in our array data. We do not use the
cross-individual contamination rate to filter array samples, and we do not process the
corresponding WGS aliquots for any array sample with a contamination greater than 10%. We
filter samples based on the call rate, which is a proxy for contamination and other errors, such
as sample preparation errors. Note that most samples with a contamination rate greater than
10% will also not meet the call rate threshold.

We extract allele frequency information from the array VCF and convert it into the file format
expected by BAFRegress. We then invoke BAFRegress with the following parameters:

Parameter Value

task “estimate”

freqfile Allele frequency information for all sites, which was
extracted from the single sample array VCF.



Results
We estimated the contamination rate below 0.11 for all array samples.  As the contamination
rate increased, we did see a small decrease in the call rate (see Figure 5). Of the 165,127 array
samples, 99% had an estimated contamination rate below 3.5%. 159,853 array samples
(96.8%) had a contamination rate less than 3% and 154,917 (93.8%) had a contamination rate
less than 1%.

Figure 5 -- Histogram of the array contamination rate estimates vs call rate.   As the contamination rate increases, the
call rate decreases.

Coverage (WGS only)

Method
Coverage is defined as the number of reads covering the bases of the genome.  Maintaining
coverage is important for consistent statistical power and accurate variant calling.  We apply
several thresholds (summarized from the FDA IDE (G200165)):

● Mean coverage (threshold ≥30x) - This is the mean number of overlapping reads at
every targeted base of the genome. Accuracy steadily decreases as mean coverage
decreases, with a rapid decrease below 20x coverage, supporting a stringent threshold
selection of a minimum of 30x.

● Genome coverage (threshold ≥90% at 20x) - Accuracy steadily decreases as the percent
of bases with at least 20x coverage drops. Drop-off of performance is initially gradual,
supporting a threshold of 90%.

● All of Us Hereditary Disease Risk gene (AoUHDR) coverage (threshold ≥95% at 20x) -
For clinically relevant areas of the genome, we insist on higher mean coverage to ensure



a higher calling accuracy.  As we reduce the coverage in the AoUHDR region, the
reduction in performance is slow initially but increases rapidly below 40%, showing that
the threshold of 95% is conservative.

● Aligned Q30 bases (threshold ≥8e10) - All bases in the sequencing reads get a quality
assignment, which is phred scaled (Q30 → probability of error is 0.001) [9].  As lower
base quality counts increase, we see a reduction in accuracy with an inflection point
starting around 6e10.

Result
As seen in Figure 6, all WGS samples exceed the thresholds that we set as part of the research
pipeline.  We had 107 samples with mean coverage greater than 70x.  None of these samples
were flagged in our joint callset QC.

Figure 6 -- Coverage metrics for the Q2 2022 release WGS samples.  The orange line is the threshold for each
metric.  There are 107 samples (0.1%), with mean coverage greater than 70x, that are not included in the mean
coverage (upper left) nor aligned q30 bases (lower right) plots.  As expected, these samples were outliers in the
number of aligned q30 bases (i.e., higher base count than samples with lower mean coverage).

Joint Callset QC (WGS only)
We deliver our WGS variants as a joint callset [10]. We perform QC on joint callsets and make
the output accessible to researchers in the RWB.  Please note that the QC steps described here



apply during creation of the WGS joint callset.  These QC steps are not run on individual
samples (e.g., GVCFs), though we flag individual samples based on these QC metrics.  The list
of flagged samples and other auxiliary information, such as ancestry predictions, is available
through the User Support Hub [1]. The joint callset QC process is similar to that of gnomAD 3.1
[11], though not exactly the same.  We have described our process here and it is summarized in
Table 2.

Table 2 -- Joint callset QC summary
QC process Variant/

sample?
Error modes addressed Notes

Hard Thresholds sample Extremely noisy samples No samples flagged.

Population Outlier sample Noisy samples 156 samples flagged (0.09%).

Based on regressing out the PCAs from callset
metrics, such as snp_count.

Hard Threshold
Filters

variant Artifacts that cannot be
detected in a single
sample

This has a simple implementation with high
precision, which saves compute for downstream
variant filtering.
45,423,717 were filtered
657,151,220 were not filtered

Allele-Specific
VariantQualityScore
Recalibration
(AS-VQSR)

variant Artifacts that cannot be
detected in a single
sample

See [12].

Sensitivity and
Precision Evaluation

both Poor variant detection See Appendix D for a list of samples.

Auxiliary processes

Ancestry sample Flagging sample outliers
and allows calculation of
population level metrics,
such as allele frequency
(AF).

Error rate from holdout set (incl. Other):  0.046
Error rate from holdout set (not incl. Other):  0.009
Concordance vs self-reported: 0.877
See Appendix A.

Number of independent, bi-allelic sites
(“high-quality sites”) used:  56695
See Appendix B.

Relatedness and
maximal
independent set of
samples

sample Related samples, which
confound analyses

4846 related pairs and 4069 samples in the
maximal independent set.

See Appendix C.
This process produces a list of the sample pairs
with kinship score, calculated by Hail [13].  No
samples are removed from the callset, but this
allows researchers to easily remove a minimal set
of samples to eliminate related samples in the
callset.



Method
Below is the list, in order, of the steps to perform the joint callset QC in the Q2 2022 release:

1. Sample hard threshold
2. Sample population outlier
3. Variant hard threshold
4. Allele-Specific Variant Quality Score Recalibration (AS-VQSR) [Filtering]
5. Sensitivity and precision evaluation

The first two steps flag samples (“Sample QC”).   The filtering steps (Variant Hard Filtering and
AS-VQSR) apply to variants in the joint callset (“Variant QC”).  We then measure the sensitivity
and precision of the joint callset.

Sample QC
We flagged samples as failing QC, rather than removing them from the callset, since we could
not validate whether samples (especially population outliers) were problematic or were just a
part of a poorly-sampled ancestry.  Flagged samples will be published in a list to researchers
through the User Support Hub [1].  These pipelines will flag samples based on the data from the
entire joint callset.  Therefore, sample-level QC (e.g., contamination) is handled upstream from
the process described here.  Sample QC is performed before Variant QC (e.g., Sample QC
happens before AS-VQSR)

Hard Threshold Flagging
We believe that some samples will have strong erroneous signals. We flag these from the joint
callset as an initial step.  The criteria for being eliminated as “obviously erroneous” will be:

● number of SNPs: < 2.4M and > 5.0M
● number of variants not present in gnomAD 3.1: > 100k
● heterozygous to homozygous ratio (SNPs and Indel separately): > 3.3

We calculated all metrics using autosomal territory only.

We did not flag any samples for failing hard thresholds.

Population Outlier Flagging
We regressed out sixteen principal component features computed as part of ancestry prediction
(see Appendix A) and used the residuals to determine the outliers.  We define outlier samples
as being eight median absolute deviations (MADs) away from the median residual in any of the
following metrics:

i. number of deletions
ii. number of insertions
iii. number of SNPs
iv. number of variants not present in gnomAD 3.1



v. insertion : deletion ratio
vi. transition : transversion (TiTv) ratio
vii. heterozygous to homozygous ratio (SNPs and Indel separately)

We flagged 156 (0.09%) samples as outliers based on at least one of the above criteria (See
Table 3 for details).  Plots of the first principal components against these eight metrics can be
found in Appendix I.

Table 3 -- Population outlier sample counts

Metric(s) considered Flagged sample
count

Indel heterozygous to homozygous ratio 63

Variants not present in gnomAD 3.1 count 43

Indel heterozygous to homozygous ratio +  SNP count 12

Deletion count + Indel heterozygous to homozygous ratio +
Insertion count + SNP count

10

Indel heterozygous to homozygous ratio + SNP
heterozygous to homozygous ratio

8

Deletion count + Indel heterozygous to homozygous ratio +
Insertion count + SNP count + SNP heterozygous to
homozygous ratio

4

Ti/Tv ratio + Variants not present in gnomAD 3.1 count 3

Deletion count + SNP count 3

SNP heterozygous to homozygous ratio 3

Deletion count + Insertion count + SNP count 2

Deletion count + Indel heterozygous to homozygous ratio +
SNP count

2

Indel heterozygous to homozygous ratio + SNP count +
SNP heterozygous to homozygous ratio

2

SNP count 1

Total 156

Variant QC
These processes will flag specific variants from a callset.  Filtered variants will be included in
cohorts, both the entire callset and cohorts generated using the Cohort Builder.  For example, if
a cohort was exported to VCF, the variant will appear as filtered in the VCF filter field (“FILTER”).



Hard Threshold Filters
If a variant does not meet the following criteria, it will be filtered (i.e., a value will appear in the
FILTER field of VCFs and Hail MatrixTables (MT)):

● No high-quality genotype (GQ>=20, DP>=10, and AB>=0.2 for heterozygotes) called for
the variant.

○ Allele Balance (AB) is calculated for each heterozygous variant as the number of
bases supporting the least-represented allele over the total number of base
observations.  In other words, min(AD)/DP for diploid GTs.

○ Filter field value: NO_HQ_GENOTYPES
● ExcessHet < 54.69

○ ExcessHet is a phred-scaled p-value. We cutoff of anything more extreme than a
z-score of -4.5 (p-value of 3.4e-06), which phred-scaled is 54.69

○ Filter field value: ExcessHet
● QUAL score is too low (lower than 60 for SNPs;69 for Indels)

○ QUAL tells you how confident we are that there is some kind of variation at a
given site. The variation may be present in one or more samples.

○ Filter field value: LowQual

Unfiltered variants will have “.” or “PASS'' in the FILTER field in the WGS joint callset VCFs and
Hail MT.  We recommend that researchers do not include sites that were filtered in their
analyses.

The variant counts can be found in Table 4.

Table 4 -- Hard threshold filter variant counts

Filters Numbers

None 657151220

'NO_HQ_GENOTYPES' 23282504

'NO_HQ_GENOTYPES', 'LowQual' 18835182

'LowQual' 2731900

'ExcessHet' 572725

'NO_HQ_GENOTYPES', 'ExcessHet' 1406

Allele-Specific VariantQualityScoreRecalibration
As part of the joint calling, we will filter variants with Allele-Specific Variant Quality Score
Recalibration (AS-VQSR or VQSR) [12].  This filtering technique uses machine learning to



identify variants across samples that are likely artifacts.  We used the following annotations as
features for training:

● Variant Confidence/Quality by Depth (AS_QD)
● Z-score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities

(AS_MQRankSum)
● Z-score from Wilcoxon rank sum test of Alt vs. Ref read position bias

(AS_ReadPosRankSum)
● Phred-scaled p-value using Fisher's exact test to detect strand bias (AS_FS)
● RMS Mapping Quality of reference vs alt reads (AS_MQ) [SNPs only]
● Symmetric Odds Ratio of 2x2 contingency table to detect strand bias

(AS_SOR)

We used the default training sets as described in the GATK documentation [14], except that we
use one additional source of training data (Axiom) for indels.  Each training set is assigned a
flag whether it is representative of true sites or whether we use the sites for training and also
assigned an initial prior likelihood score.  Details of these parameters can be found in the GATK
documentation [12,14], and the sites can be found as public resource downloads for the GATK
[15].  We have reprinted the training resource list below for clarity, including the documentation
from the GATK at the time of this writing:

● SNP training sites:
○ Omni -- This resource is a set of polymorphic SNP sites produced by the Omni

genotyping array [16]. VQSR will consider that the variants in this resource are
representative of true sites (truth=true), and will use them to train the
recalibration model (training=true). The prior likelihood we assign to these
variants is Q12 (93.69%).

○ HapMap [17] -- This resource is a SNP callset that has been validated to a very
high degree of confidence. VQSR will consider that the variants in this resource
are representative of true sites (truth=true) and will use them to train the
recalibration model (training=true). We will also use these sites later on to choose
a threshold for filtering variants based on sensitivity to truth sites. The prior
likelihood we assign to these variants is Q15 (96.84%).

○ 1000G [18] -- This resource is a set of high-confidence SNP sites produced by
the 1000 Genomes Project. VQSR will consider that the variants in this resource
may contain true variants as well as false positives (truth=false) and will use
them to train the recalibration model (training=true). The prior likelihood we
assign to these variants is Q10 (90%).

● Indels:
○ Mills [19] -- This resource is an Indel callset that has been validated to a high

degree of confidence. VQSR will consider that the variants in this resource are
representative of true sites (truth=true) and will use them to train the recalibration
model (training=true). The prior likelihood we assign to these variants is Q12
(93.69%).



○ Axiom (1000G) -- This resource is an Indel callset based on the Affymetrix Axiom
array on 1000 Genomes Project samples [18].  VQSR will consider that the
variants in this resource may contain true variants as well as false positives
(truth=false) and will use them to train the recalibration model (training=true) The
prior likelihood we assign to these variants is Q10 (90%).

Sensitivity and Precision Evaluation
In the callset, we included four well-characterized control samples (four Genomes-in-a-Bottle
samples (GiaB) [20] from HapMap [17] and Personal Genome Project; see Appendix D), which
we can use to determine sensitivity and precision.  The samples were sequenced with the same
protocol as AoU.  These samples do not appear in any user data (e.g., cohorts built using the
RWB).

We use the high confidence calling region, defined by GiaB v4.2.1, as the source of
ground truth.  In order to be called a true positive, a variant must match the chromosome,
position, reference allele, and alternate allele.  In cases of sites with multiple alternate alleles,
each alternate allele is considered separately.  Sensitivity and precision results can be seen in
Table 5.

Table 5 -- Sensitivity and precision measurements for control samples using the AoU sequencing protocol

Variant type Sample Sensitivity Precision

SNV HG-001 0.994 >0.999

HG-003 0.987 >0.999

HG-004 0.987 >0.999

HG-005 0.987 >0.999

Indel HG-001 0.971 0.996

HG-003 0.970 0.997

HG-004 0.972 0.998

HG-005 0.980 0.999

Known Issues
The issues below apply to the Q2 2022 release genomic data (arrays, WGS, and auxiliary data).
These will be addressed in the next callset release (ETA 2022), unless stated otherwise.  We
have provided suggested actions for researchers to workaround the issue.  Sample lists
relevant to these issues can be found in the User Support Hub [1].
For known issues that existed in the previous releases, we have updated the text to represent
changes (e.g., different sample counts).



1. WGS samples are not a strict subset of the array samples
● Affects:

○ WGS joint callset VCFs
○ WGS joint callset Hail MatrixTable (MT)

● Suggested action:
○ If your analysis explicitly involves cross-analyzing WGS samples and the

corresponding arrays: Remove the 2,994 affected WGS files from your
analysis.

○ Otherwise: No action
● Description:  As described in Known Issue #2 below, the array data are missing

2,994 participants that are included in the WGS samples.  The array samples
were removed for having a low call rate (under 0.98), but this was due to an
inconsistency between the call rate tools being used by the GCs and the DRC.
We were still able to use these arrays in our WGS array fingerprint concordance
QC step.  Once the inconsistency is corrected, we believe that these samples will
be above the call rate threshold.  Note that none of the corresponding array
samples had a call rate below 0.974, even when using the most pessimistic
estimate, and none failed any other QC check for arrays.

○ The sample list (2,994 (3.0%) WGS samples) will be provided through the
User Support Hub.

● Remediation: We are addressing this in two ways:
○ We will be reprocessing all array data that are part of the Q2 2022

release.  As part of this effort, we will be synchronizing the way call rates
are calculated.  For all future callsets, this will further reduce the
possibility of having internal inconsistencies over which samples should
be included.

○ Once we have consistent callset calculation, we will implement an
automated process which will disallow a WGS sample to be included in
the joint callset without a corresponding array that passes the single
sample QC.

2. Extraneous array samples were failed due to
inconsistency of call rate calculations and are missing from
the array data

● Affects:
○ Array VCFs
○ Array Hail MT
○ Array PLINK bed/bim/fam

● Suggested action: None.  We will provide the sample list of WGS samples
without corresponding arrays in the RWB.



● Description:  We failed 2,994 arrays with corresponding WGS for not meeting the
call rate threshold of 0.98 (see Table 1), even though these passed clinical call
rate QC at the GCs.  These arrays did not fail any other single sample QC check,
but are not included in the Q2 2022 release array VCFs, Hail MT, or PLINK files.
In the single sample QC, the DRC generated lower call rate values than the GCs
(see Table 6), which prevented samples from meeting the call rate threshold. The
DRC was using a different call rate metric (gencall) than the GCs had agreed to
use (GTC); GTC call rate yields a higher value, on average.  The DRC was not
able to switch GTC call rate, because one GC (Johns Hopkins (JH)) was using
an older version of the picard tool that disallows calculation of the GTC call rate.
The average difference between the two call rate metrics was 0.004.  We believe
that this difference in call rates is not large enough to fail the corresponding WGS
files outright. Where we had corresponding WGS and an array that only failed the
minimum call rate, we used the array file to perform our fingerprint concordance
check. All corresponding WGS passed the fingerprint concordance check of the
2,994 arrays failing only the callset rate with corresponding WGS.

● Remediation:  As part of the next release, we will be reprocessing all array data
that are part of Q2 2022.  As part of this effort, we will be synchronizing the way
call rates are calculated.  This will remove any possibility of having internal
inconsistencies over which array samples we include.

Table 6 -- Summary statistics of the DRC and GC array call rates in the Q2 2022 release

Call Rate DRC GC

Mean 0.991 0.995

Standard Deviation 0.003 0.003

Minimum 0.980 0.980

25% 0.990 0.994

50% 0.991 0.996

75% 0.993 0.997

Maximum >0.999 >0.999

3. Ancestry prediction has higher error rates for Middle Eastern
ancestry

● Affects:
○ Ancestry predictions
○ Variant Annotation Table (VAT)
○ Public Data Browser



● Suggested Action: When limiting cohorts to samples with computed ancestry of Middle
Eastern (“mid”), use the ancestry predictions that do not include “other”.  In other words,
use the “ancestry_pred” column, instead of “ancestry_pred_other”.

● Description:  A paucity of labeled Middle Eastern samples reduced the performance of
the random forest classifier.  This caused the confidence to dip when predicting ancestry
for Middle Eastern samples, which caused a larger proportion of these samples relative
to other computed ancestries, to be classified as Other (“oth”).  The VAT uses these
computed ancestries to generate All of Us population (gvs_mid_*  and gvs_oth_*)
annotations.  The genomic data in the public Data Browser are also dependent on the
ancestry predictions for populating population information about variants.

See Table A.2 for details of the ancestry prediction performance
● Remediation:  We will investigate other approaches for classification.  We will start the

updated approach with the next callset.

4. Allelic Depth (AD) has incorrect VCF header line and
unconventional format

● Affects:
○ WGS joint callset VCFs
○ WGS joint callset Hail MT

● Suggested Action:
○ If you do not use the AD field, then no action.
○ Otherwise, use the AD field according to the format detailed here.  This will likely

require a change in analysis code.
● Description:

○ The conventional header for AD is:
##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic

depths for the ref and alt alleles in the order listed">

The AoU callset includes the conventional header in the VCF.  However, this
does not represent the data.  The header should be:

##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Allelic
depths for the alleles specified in the genotype field (GT), with
the reference allele always included.  For diploid samples, this
will have zero (hom ref), two (het ref), or three (het alt)
values.">

Conventionally, the AD field has a value for the reference and each alternate
allele (i.e., in the VCF header: Number=R) in the genotypes.  We have a different
convention in this release, which is a similar (not the same) encoding to Local Allelic
Depths in Hail.  Please note that we do not use any local allele fields in this release.

We only provide allelic depth for variants with a non-ref allele (i.e., not a
homozygous reference variant).  We include the informative read count for all alleles in
the genotype field (GT) plus the reference.  Therefore, all AD values have zero
(homozygous reference), two (heterozygous reference), or three (non-reference

https://hail.is/docs/0.2/experimental/vcf_combiner.html#local-alleles
https://hail.is/docs/0.2/experimental/vcf_combiner.html#local-alleles


heterozygous) numbers.  For example, if the genotype is “0/1” and AD is “[10,20]”, then
there were 10 reads supporting the reference (GT 0) and 20 reads supporting the first
alternate allele (GT 1).  If the genotype is 1/3 and AD is “[0, 5, 10]”, then there were no
reads supporting the reference, 5 reads supporting the first alternate allele (GT 1), and
10 reads supporting the third alternate allele (GT 3). Table 7 has formatting of the AD
field values given examples of alternate allele counts and a corresponding GT.

Table 7 -- All Of Us Q2 2022 release AD field examples

Variant Type Number of
alternate alleles

Genotype call
(GT)

Resulting Allelic
Depth (AD)

Homozygous Reference <any> 0/0 .  (missing)

Heterozygous Reference 1 0/1 [N0,N1]

7 0/4 [N0,N4]

Homozygous Alternate 1 1/1 [N0*,N1]

7 3/3 [N0*,N3]

Heterozygous Alternate 2 1/2 [N0*, N1, N2]

7 2/4 [N0*, N2, N4]

No Call <any> ./. . (missing)

* - These will usually be zero, since these are read counts of the reference allele in a
non-reference variant.

● Remediation (ETA 2022):
○ We will rename the AD field in the AoU WGS joint callset and include a correct

header for the renamed field. This will minimize confusion between AD in AoU
genomic data and the conventional definition of AD.

5. Extraneous INFO field (AS_YNG) in the WGS data
● Affects:

○ WGS joint callset VCFs
○ WGS joint callset Hail MT

● Suggested Action:  Do not include the AS_YNG field in any analyses.
● Description:  The WGS joint callset includes AS_YNG (an INFO field), which should be

ignored by researchers.
● Remediation (ETA 2022):

○ We will remove AS_YNG in future releases.



6. WGS variant calls on chromosome Y need additional filtering
● Affects:

○ WGS joint callset VCFs
○ WGS joint callset Hail MT

● Suggested Action:
○ If you do not use variant calls on chrY, then no action.
○ Otherwise, we recommend that you use AD, GQ, and GT to filter variants on

chromosome Y.
● Description:  We see variants with heterozygous calls in chromosome Y, which cannot

be correct germline calls.  After manual review, we believe that regions of chromosome
Y are prone to misalignment artifacts (low mappability).  This will cause heterozygous
calls in chrY that are likely artifacts.  We have not investigated whether these are
somatic mutations.

● Remediation (ETA 2023):  We will provide a set of regions (via a BED file) that
researchers can use to mask regions of the genome with poor calling accuracy for
chromosome Y.

7. Small subset of samples missing corresponding CDR data
● Affects:

○ WGS joint callset VCFs
○ WGS joint callset Hail MT
○ Array single sample VCFs
○ Array merged Hail MT
○ Array PLINK bed/bim/fam

● Suggested Action:
○ If you are not using CDR data (e.g., surveys, EHR), then no action.
○ Otherwise, remove samples without corresponding CDR data.   We will provide

the lists of WGS and array samples without corresponding data in the CDR.
● Description:  Due to an internal error in querying (since fixed) for the C2022Q2R2 CDR

release, additional participants were dropped from the CDR that were not reflected in the
genomic data.  This affects 32 WGS (0.03%) samples and 55 array samples (0.03%).

○ Note:  The affected participants are consented to appear in the genomic data.
● Remediation:  We have fixed the source of this issue and this will not affect future

releases.  We have improved our processes in order to catch this type of issue earlier.
We will provide two lists (WGS and array) of the affected samples through the User
Support Hub.

FAQ
1. Why do you fail samples based on contamination rate for WGS, but not for array

samples?



WGS analyses (e.g., mosaicism) rely on other signals, such as read counts,
which are affected by contamination.  Low rates of contamination do not affect
array calls and problematic levels of contamination will be reflected in the array
call rate.

2. Did you remove samples from participants with bone marrow transplants?
Yes, we removed both array and WGS samples associated with participants that
have received bone marrow transplants, according to the corresponding
electronic health record (EHR) and survey responses provided by
participants(Overall Health).

3. Are all samples in the WGS joint callset sourced from blood?
Yes.  Although the program does have saliva WGS samples, we did not include
these samples in the Q2 2022 release.  Once we identify any batch effects
between saliva and blood samples (ETA 2022), we will reassess the inclusion of
saliva samples in the joint WGS callset.  If we decide that the batch effects will
have minimal impact, we will include saliva samples in the WGS joint callsets in
2023.
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Appendix A: Ancestry
We computed categorical ancestry for all of the WGS samples in All of Us and made these
available to researchers.  These predictions are also the basis for population allele frequency
calculations in the Variant Annotation Table (e.g. gvs_afr_ac) and data in the Genomic Variants
section of the public Data Browser.   We used the high-quality set of sites (HQ sites), described
in Appendix B, to determine an ancestry label for each sample.  The ancestry categories are
based on the same labels used in gnomAD [21], Human Genome Diversity Project [22], and
1000 Genomes [18]:

● African (afr)
● Latino/Native American/Ad Mixed American (amr)
● East Asian (eas)
● Middle Eastern (mid)
● European (eur) -- Composed of Finnish (FIN) and Non-Finnish European (NFE)
● Other (oth) -- not belonging to one of the other ancestries or is an admixture.
● South Asian (sas)

We trained a random forest classifier [23,24] on a training set of the HGDP and 1kg samples
variants on chromosomes 20 and 21, obtained from gnomAD [25]. We generated the first 16
principal components (PCs) of the training sample genotypes (using the hwe_normalized_pca in
Hail [26]) at the high-quality variant sites (see Appendix B) for use as the feature vector for each
training sample.  We used the truth labels from the sample metadata, which can be found
alongside the VCFs.  Note that we do not train the classifier on the samples labeled as “Other.”
We use the label probabilities (“confidence”) of the classifier on the other ancestries to
determine ancestry of “Other”.

To determine the ancestry of All of Us samples, we project the All of Us samples into the PCA
space of the training data and apply the classifier (see Figure A.1).  Since we do not have truth
labels, we can not determine the accuracy of our All of Us predictions.  As a proxy for the
accuracy of our All of Us predictions, we look at the concordance between the survey results
and the predicted ancestry.  The ancestry predictions can be found in Table A.1.

https://hail.is/docs/0.2/methods/genetics.html#hail.methods.hwe_normalized_pca
https://broadinstitute.github.io/picard


Figure A.1 -- Ancestry predictions for the All of Us WGS samples plotted on the first two principal components (PC1
on x-axis and PC2 on the y-axis) of the genotype calls.

Table A.1 -- Breakdown of the computed ancestries in All Of Us WGS data

Computed Ancestry (sorted by percentage) Count (percentage)

European 48112 (48.8%)

African 23179 (23.5%)

Latino/Admixed American 15133 (15.3%)

Other 8907 (9.0%)

East Asian 2119 (2.1%)

South Asian 973 (1.0%)

Middle Eastern 167 (0.2%)

Total: 98590 (100.0%)

We evaluated the performance of the ancestry predictions using two different test datasets:



1. A holdout set of training samples.  We tested performance with and without the “Other”
ancestry

a. Error rate (incl Other): 0.046
i. See Table A.2
ii. Please see Known Issue #3, since the error rate is higher for Middle

Eastern (mid) ancestry.  Our classifier conflates Middle Eastern and
Other.

b. Error rate (not incl Other): 0.009
i. See Table A.3

Table A.2 -- Error rate (incl. Other) on labeled training data using holdout set

Predicted

Actual AFR AMR EA
S

EUR MID OTH SAS

AFR 200 0 0 0 0 0 0

AMR 0 50 0 0 0 0 0

EAS 0 0 198 0 0 2 0

EUR 0 0 0 199 0 1 0

MID 0 0 0 0 34 16 0

OTH 1 0 2 3 10 25 6

SAS 0 0 0 0 0 3 197

Table A.3 -- Error rate (not incl. Other) on labeled training data using holdout set

Predicted

Actual AFR AMR EAS EUR MID SAS

AFR 200 0 0 0 0 0

AMR 0 50 0 0 0 0

EAS 0 0 200 0 0 0

EUR 0 0 0 199 0 0

MID 0 0 0 6 44 0

SAS 0 1 1 0 0 199

2. We evaluated the performance of the ancestry predictions against the self-reported
ethnicity of the All of Us samples as ground truth. The performance should be worse



than the holdout HGDP samples, but this is expected.  Self-reported ethnicity does not
correspond to the populations listed above and is prone to false reporting.

“Correct” labeling between HGDP/1kg populations and All of Us ethnicities:
1. African (AFR) → Black
2. Latino/Ad Mixed American (AMR) → Hispanic
3. East Asian (EAS) → Asian
4. Finnish (FIN) → White
5. Middle Eastern (MID) → MENA
6. Non-Finnish European (NFE) → White
7. Other (OTH) → Other (do not include skipped)
8. South Asian (SAS) → Asian

We do not include any samples where the self-reported ethnicity is “Skip”, “Prefer not to
answer”, or was not filled in.  If a participant selected that their ethnicity was not a possible
selection (“NoneOfThese”), we counted them as “Other”.

Based on the procedure above, the concordance between self-reported ethnicity and the
ancestry predictions: 0.877

Appendix B: High quality site determination
In order to do relatedness and ancestry checks, we identified a corpus of sites that can be
called accurately in both our ancestry training set (HGDP+1KG) and our target data (All of Us
WGS callset).  We used a similar methodology that gnomAD used to determine high-quality
sites [11], but we repeat it here for clarity:

1. Autosomal, bi-allelic single nucleotide variants (SNVs) only
2. Allele frequency > 0.1%
3. Call rate > 99%
4. LD-pruned with a cutoff of r2 = 0.1

Our aim was to assemble a set of independent sites where we can be confident of the accuracy.

We identified 56695 high-quality (HQ) sites in the Q2 2022 callset.  These were HQ sites in both
the HGDP+1kg training VCF and the All of Us Q2 2022 callset.  A sites-only VCF of the HQ
sites is available in the RWB (access required).

Appendix C: Relatedness
We calculated the kinship score and reported any pairs with a kinship score over 0.1.
The kinship score is half of the fraction of the genetic material shared (ranges from 0.0 - 0.5).

● Parent-child or siblings: 0.25
● Identical twins: 0.5



Please see the Hail pc_relate function [13] documentation for more information, including
interpretation.
We will determine the maximal independent set [27] for related samples to minimize the number
of samples that would need pruning.  Using the HQ sites identified in Appendix B, researchers
can remove first and second degree relatives.

We estimated 4,846 related pairs and 4,069 samples in the maximal independent set for kinship
scores above 0.1.  The sample pairs, with kinship score, and the set are available in the RWB
(access required).

Appendix D: Samples used in the Sensitivity and
Precision Evaluation
In order to calculate the sensitivity and precision of the joint callset, we included four
well-characterized samples in the Q2 2022 callset (Table D.1). We sequenced the NIST
reference materials (DNA samples) from Genome in a Bottle (GiaB) and performed variant
calling as described in the main text.  We used the corresponding published set of variant calls
for each sample as the ground truth in our sensitivity and precision calculations [20].

Please note that the control samples do not appear in the data released to researchers.

Table D.1 -- Samples used in sensitivity and precision evaluation

Control
Sample

Ground Truth Genome
Center

GVCF origin Notes

HG-001 GiaB BI DRAGEN 3.4.12 NA12878

HG-003 GiaB UW DRAGEN 3.4.12 Ashkenazi Trio
NA24149 - Father

HG-004 GiaB BI DRAGEN 3.4.12 Ashkenazi Trio
NA24143 - Mother

HG-005 GiaB BI DRAGEN 3.4.12 Han ancestry
NA24631- Son

Genome Center:
BI -- Broad Institute
UW -- University of Washington

Appendix E: Single sample QC processes performed
See Table E.1 to determine which of the single sample QC processes were performed.  In cases
where both GCs and the DRC performed a check, if the sample failed either check, it was not

https://hail.is/docs/0.2/_modules/hail/methods/relatedness/pc_relate.html
https://en.wikipedia.org/wiki/Maximal_independent_set


included in the Q2 2022 release (though see Known Issues above for exceptions regarding call
rate).

Table E.1 -- Single sample QC processes and which centers performed the check

QC process Data types Calculated at the DRC or GCs?

Fingerprint Concordance WGS Both*

Sex concordance Arrays GCs only

Sex concordance WGS Both

Cross-individual contamination rate Arrays GCs only

Cross-individual contamination rate WGS Both

Call rate Arrays GCs only

Coverage WGS GCs only

*One GC (Broad Institute) performed an internal check against a different fingerprint (Fluidigm SNP
genotyping (SNPtype chemistry) using the 96.96 Dynamic Array), which did not use the same fingerprint
sites as the array.  The DRC treated these samples the same as from the other GCs and ran the array
concordance as described in the main text of this document.

Appendix F: All of Us Hereditary Disease Risk genes
The following gene symbols are in the All of Us Hereditary Disease Risk  (AoUHDR) genes.  We
have additional WGS QC criteria in the regions covered by these genes, described in Table 1 of
the main text.  In the Q2 2022 callset, the AoUHDR genes are the same as the American
College of Medical Genetics and Genomics’ list of 59 genes where incidental findings should be
reported (ACMG59) [28].  The AoUHDR gene list may change in future releases.

ACTA2, ACTC1, APC, APOB, ATP7B, BMPR1A, BRCA1, BRCA2, CACNA1S, COL3A1, DSC2,
DSG2, DSP, FBN1, GLA, KCNH2, KCNQ1, LDLR, LMNA, MEN1, MLH1, MSH2, MSH6,
MUTYH, MYBPC3, MYH11, MYH7, MYL2, MYL3, NF2, OTC, PCSK9, PKP2, PMS2, PRKAG2,
PTEN, RB1, RET, RYR1, RYR2, SCN5A, SDHAF2, SDHB, SDHC, SDHD, SMAD3, SMAD4,
STK11, TGFBR1, TGFBR2, TMEM43, TNNI3, TNNT2, TP53, TPM1, TSC1, TSC2, VHL, and
WT1

Appendix G: DRAGEN invocation parameters
Table G.1 summarizes the parameters used by the GCs to generate GVCFs, contamination
estimates, and sex ploidy calls from the DRAGEN.

Table G.1 DRAGEN 3.4.12 parameters run at all GCs
Parameter Parameter Value Description



-f n/a Overwrite if output exists

-r <hg38-ref-dir> The reference to use

--fastq-list <path-to>/fastq_list.csv
A list of fastq files to use as input for
this sample

--fastq-list-sample-id <sampleID>
The sample ID to use for naming this
sample

--output-directory <output-dir> The location of the final output files

--intermediate-results-dir <int-results-dir>
The location to write intermediate
outputs

--output-file-prefix
[CenterID]_[Biobankid_Sampleid]_[Lo
calID:optional]_[Rev#]

Standardized naming prefix for each
output file

--enable-variant-caller TRUE Turn on variant call outputs

--enable-duplicate-marking TRUE
Mark duplicate reads during
alignment

--enable-map-align TRUE
Produce an alignment from unaligned
read input

--enable-map-align-output TRUE Store the output of the alignment

--output-format CRAM Store the alignment as a CRAM file

--vc-hard-filter
DRAGENHardQUAL:all:QUAL<5.0;Lo
wDepth:all:DP<=1'

This parameter setting changes the
threshold on the quality to 5.

--vc-frd-max-effective-depth 40

Setting this parameter puts a limit on
the penalty value that is applied for
variant calls that deviate from the
expected 50% allele fraction for
heterozygous variants.

--qc-cross-cont-vcf <path-to/SNP_NCBI_GRCh38.vcf>
Marker sites to use for contamination
estimation

--qc-coverage-region-1 <path-to/wgs_coverage_regions.bed>
Regions to use for coverage analysis
(whole genome)

--qc-coverage-reports-1 cov_report
The type of reports requested for qc-
coverage-region-1

--qc-coverage-region-2 <path-to/HDRR_regions.bed>
Regions to use for coverage analysis
(HDR reportable regions)

--qc-coverage-reports-2 cov_report
The type of reports requested for qc-
coverage-region-2

--qc-coverage-region-3 <path-to/PGx_regions.bed>
Regions to use for coverage analysis
(PGx reportable regions)

--qc-coverage-reports-3 cov_report
The type of reports requested for qc-
coverage-region-3



Appendix H: Self-reported sex at birth
See Table H.1 for the counts and percentages of participant responses to the sex assigned at
birth question in the Basics survey (based on All of Us CDR release C2022Q2R2).  The survey
question presented to participants was “What was your biological sex assigned at birth?” and
can be found in the Basics survey. The CDR code for this question is sex_at_birth.

Table H.1  -- Q2 2022 release participants response breakdown to sex assigned at birth question

Q2 2022 Release WGS Array

Sex assigned at birth
responses counts percent counts percent

Female 58925 59.79 99346 60.18

Male 38133 38.69 63251 38.32

I prefer not to answer 79 0.08 120 0.07

None of these fully
describe me 35 0.04 55 0.03

Intersex 22 0.02 35 0.02

No matching
concept* 363 0.37 669 0.41

PMI: Skip* 1001 1.02 1596 0.97

Total 98558 165072

Percentages may not add to 100 due to rounding. The total counts reflect the missing CDR
samples in the Q2 2022 release (see Known Issue #7).

* “No matching concept” and “PMI: Skip” are separate counts both referring to no response for
sex_at_birth. These are separate because participants in “No matching concept” did select a
gender option for this survey question. The terms used here are the Concept Names as they
appear in the CDR.

Appendix I: Plots of the first principal component
against population outlier QC metrics
Figure I.1 (next page) contains the plots of the first principal component against metrics used for
determining sample population outliers.  Note that we use sixteen principal components for
determining which samples should be flagged for being outliers in a metric.  The blue line shows



the linear regression fit in the first dimension (residuals are calculated as the distance from this
hyperplane).  The failure count over these plots will sum higher than the 156 flagged samples,
since samples can get flagged for multiple criteria. Please see the next page for Figure I.1.



Figure I.1 -- Sample population outlier plots for eight metrics (see Population Outlier Flagging). Each metric (y-axis)
is plotted against the first (of sixteen) principal components (x-axis).  Outliers are identified by regressing out the
principal components and determining if the residual is over 8 MADs from the sample population.

Appendix J: Array processing overview
See Figure J.1 for an overview of the array genotyping process for the All of Us Research
Program.  The three GCs used identical array products, scanners, resource files, and genotype



calling software.  The GCs used the Illumina Global Diversity Array (GDA)
(https://www.illumina.com/products/by-type/microarray-kits/infinium-global-diversity.html).

● Array product details:
○ Bead pool file: GDA-8v1-0_A5.bpm
○ EGT cluster file:  GDA-8v1-0_A1_ClusterFile.egt
○ gentrain v.3
○ reference hg19 (Note:  We liftover to hg38 before publishing array data in the

RWB)
○ gencall cut-off 0.15
○ 1,914,935 assays

■ 44,172 indels
■ 9,935 IntensityOnly (probes intended only for Copy Number Variant

(CNV) calling)
■ 70,174 duplicates (same position, different probes)

● Chemistry:  Illumina Infinium LCG using automated protocol
● Liquid handling robotics:  Various platforms across the genome centers
● Scanners:  Illumina iSCANs with Automated Array Loader
● Software:

○ Illumina IAAP Version:
iaap-cli-linux-x64-1.1.0-sha.80d7e5b3d9c1fdfc2e99b472a90652fd3848bbc7.tar.g
z

■ IAAP converts raw data (.idat files – 2 per sample) into a single .gtc file
per sample using the .bpm file (defines strand, probes sequences, and
illumicode address) and the .egt file (defines the relationship between
intensities and genotype calls)

○ Picard-2.20.X or above [29], but exact version depended on the GC.
■ Johns Hopkins: 2.20.8-SNAPSHOT
■ Broad Institute: 2.23.0
■ University of Washington: 2.23.3
■ Picard versions 2.23.0 and above modified GtcToVcf to read the

gtc_call_rate from the GTC file and put it into the VCF header.
● Please see Known Issue #1 and Known Issue #2 for issues that

arose due to Picard version inconsistencies.
■ Picard tool, GTCtoVCF, converts the .gtc file into a vcf file.

○ BAFRegress version 0.9.3 [8]
■ BAFRegress measures the within species DNA sample contamination

using B allele frequency data from Illumina genotyping arrays using a
regression model

● Quality Control:  Each genome center ran the GDA array under Clinical Laboratory
Improvement Amendments (CLIA) compliant protocols.  We generated .gtc files and
uploaded metrics to in-house Laboratory Information Management Systems (LIMS)
systems for quality control review.  At batch level (each set of 96 well plates run together
in the laboratory at one time), each GC included positive control samples, which were
required to have > 98% call rate and >99% concordance to existing data, in order to

https://www.illumina.com/products/by-type/microarray-kits/infinium-global-diversity.html


approve release of the batch of data.  At the sample level, the call rate and sex are the
key quality control determinants [30].  Contamination is also measured using
BAFRegress [8] and reported out as metadata.  Any sample with a call rate below 98%
is repeated one time in the laboratory.  Genotyped sex is determined by plotting
normalized X versus normalized Y intensity values for a batch of samples [30].  Any
sample discordant with ‘sex assigned at birth’ reported by an All of Us participant is
flagged for further detailed review.  If multiple sex discordant samples are clustered on
an array or on a 96 well plate, the entire array or plate will have data production
repeated.  Samples identified with sex chromosome aneuploidies are also reported back
as metadata (XXX, XXY, XYY, etc).  A final processing status of “PASS,” “FAIL” or
“ABANDON” is determined before release of data to the DRC.  An array sample will
PASS if the call rate is > 98% and the genotyped sex and sex assigned at birth are
concordant (or the sex assigned at birth is  “Intersex”, “I prefer not to answer”, “none of
these fully describe me”, or skipped the question).  An array sample will FAIL if the
genotyped sex and the sex assigned at birth are discordant or if the call rate is less than
98% on the first run of the sample.  An array sample will have the status ABANDON if
the call rate is less than 98% after at least 2 attempts at the GC.

Figure J.1 -- Overview of the array processing pipeline.

Appendix K: Self-reported race/ethnicity
As seen in Table K.1, the race/ethnicity breakdown of the genomic data is similar to all
participants in the AoURP (based on All of Us CDR release C2022Q2R2).  Samples with
“PMI_Skip” responses include participants that answered “prefer not to answer”, entered blank



text, or did not respond to the survey question. As seen in Appendix L, all WGS and array
samples have corresponding survey data.

Table K.1 -- Self-reported Race/Ethnicity breakdown of the WGS samples

Self-Reported
Race/Ethnicity

Survey
Response
Counts (%)

WGS Counts (%) Array Counts (%)

AIAN 47 (0.0%) – –

Asian 12317 (3.3%) 2980 (3.0%) 5163 (3.1%)

Asian, White 858 (0.2%) 213 (0.4%) 359 (0.4%)

Black 72706 (19.5%) 21322 (21.6%) 32347 (19.6%)

Black, White 1064 (0.3%) 283 (0.6%) 443 (0.5%)

Hispanic 59085 (15.9%) 17325 (17.6%) 26206 (15.9%)

Hispanic, White 2851 (0.8%) 677 (1.4%) 1139 (1.4%)

MENA 2122 (0.6%) 522 (0.5%) 907 (0.6%)

Other 14606 (3.9%) 3502 (2.4%) 5816 (2.4%)

PMI_Skip 6732 (1.8%) 1885 (1.9%) 3004 (1.8%)

White 200018 (53.7%) 49849 (50.6%) 89688 (54.3%)

Total 331382 (100.0%) 98558 (100.0%) 165072 (100.0%)

Appendix L: Data type availability with genomic data
We provide 95,596 WGS samples (97%) with corresponding array data (see Known Issues #1
for why this is not 100% of WGS samples).  Additionally, both WGS (Table L.1) and array (Table
L.2) data have other corresponding non-genomic data. This can be one or more of the
following:

● Electronic Health Records (EHR)
● Physical Measurements (PM)
● Participant Provided Information (PPI/surveys)
● Fitbit (FB)

Descriptions of the non-genomic data can be found on the All of Us Data Sources page.

Table L.1 -- WGS overlap with non-genomic data types

Data Combination Description
Participant

Count

WGS any WGS data 98590

https://www.researchallofus.org/data-tools/data-sources/


WGS and PPI any WGS AND any PPI 98558

WGS and PPI and PM any WGS AND any PPI AND any PM 98463

WGS and EHR any WGS AND any EHR 81054

WGS and PPI and EHR any WGS AND any PPI AND any EHR 81054

WGS and PPI and EHR
and PM any WGS AND any EHR AND any PM AND any PPI 81023

WGS and Fitbit any WGS AND any Fitbit 3378

WGS and PPI and Fitbit any WGS AND any PPI AND Fitbit 3378

WGS and PPI and PM and
Fitbit any WGS AND any PPI AND any PM AND any Fitbit 3373

WGS and Fitbit and PPI
and EHR any WGS AND any Fitbit AND and PPI AND any EHR 2817

WGS and PPI and EHR
and PM and Fitbit

any WGS AND any EHR AND and PM AND any PPI
AND any Fitbit 2817

Table L.2 -- Array overlap with non-genomic data types

Data Combination Description
Participant

Count

Array any Array data 165127

Array and PPI any Array AND any PPI 165072

Array and PPI and PM any Array AND any PPI AND any PM 164608

Array and EHR any Array AND any EHR 136922

Array and PPI and EHR any Array AND any PPI AND any EHR 136922

Array and PPI and EHR
and PM any Array AND any EHR AND any PM AND any PPI 136877

Array and Fitbit any Array AND any Fitbit 6810

Array and PPI and Fitbit any Array AND any PPI AND Fitbit 6810

Array and PPI and PM and
Fitbit any Array AND any PPI AND any PM AND any Fitbit 6779

Array and Fitbit and PPI
and EHR any Array AND any Fitbit AND and PPI AND any EHR 5678

Array and PPI and EHR
and PM and Fitbit

any Array AND any EHR AND and PM AND any PPI
AND any Fitbit 5677



Appendix M: Genome Centers and Data and
Research Center
Below is the listing of the three Genome Centers (GCs), the Data and Research Center (DRC),
and the Biobank.

Role Institution(s) PI(s)

Genome Center Baylor College of Medicine, Johns
Hopkins University

Richard Gibbs
Eric A. Boerwinkle
Kimberly F. Doheny

Broad Institute Stacey Gabriel

Northwest Genomics Center at the
University of Washington

Deborah A. Nickerson

Data and Research Center Vanderbilt University Medical Center Paul Harris
Dan M. Roden

Broad Institute Anthony Philippakis

Verily Life Sciences David Glazer

Biobank Mayo Clinic Stephen Norman Thibodeau


