SAS Analytics Guide:

How to perform logistic regression

Data version: Registered Tier All of Us Curated Data Repository (CDR) v7 (R2022Q4R9)
Analysis tool: SAS Studio
Authors:
Bassent Abdelbary, Ph.D., MPH (⋈)
University of Texas Rio Grande Valley College of Health Professions

Please note: This guide aims to demonstrate the utilization of **PROC LOGISTIC** using SAS Studio. However, it is important to note that this guide is not comprehensive and does not encompass all facets of the scientific process which researchers are required to undertake. Specifically, it only does not delve into data cleaning and verification, assumption validation, model diagnostics, potential follow-up analyses, or any other possible approaches for performing a logistic regression with forward selection.

Table of Contents

- Introduction
- Description of the dataset
- <u>Statistical analysis procedures</u>
- Additional resources

Introduction

This guide includes examples of statistical analysis processes which were used as part of an exploratory study designed to understand differences in prescriptions of newer generation diabetes medications such as glucagon-like peptide 1 (GLP-1) agonists and sodium-glucose transport protein 2 (SGLT2) inhibitors by looking at patterns within the electronic health records (EHR) and survey data from the *All of Us* Research Program.

For this project, a cohort from the *All of Us* dataset was selected using all participants aged 18 to 75 years old with documented cases of type 2 diabetes in their EHR. Demographic data were combined with prescription data from EHR and select survey questions regarding health insurance type and trends in prescription refills.

- **Outcome variable:** Prescription of newer generation diabetes medications such as GLP-1 agonists and SGLT-2 inhibitors (binary variable Yes/No).
- **Independent variable:** Several independent variables were evaluated as a part of a stepwise method. For this demonstration guide, we will use health insurance (Yes/No) as our independent variable.
- **Confounding variable:** For this guide, we will use race and gender as the confounding variable.

In this analysis, **PROC LOGISTIC** models the probability of no GLP-1/SGLT-2 initial prescription based on chronology of prescription history. The Wald test is used to display the chi² and p-value when using **PROC LOGISTIC**. Parameter estimates and odds ratio could be displayed as well with the additional options listed below.

- 1. The **CLASS** statement names the classification variables to be used as explanatory variables in the analysis.
- 2. The **EXPB** option displays the Exp (Est) column containing the exponentiated parameter estimates.
- 3. The **SELECTION=FORWARD** option is specified to carry out the forward selection.
- For the ods graphics, The ODDSRATIO statements compute the odds ratios for the covariates, and the NOOR option suppresses the default odds ratio table. CONTRAST statements provide another method of producing the odds ratios.

Description of the dataset

For this example, we will use the following criteria to define the cohort for this analysis.

- 1. Created cohort as defined by the following measures.
 - Inclusion criteria:
 - i. Completed The Basics survey including questions about demographics
 - ii. Adults (Participants aged 18-75 years old)
 - iii. Had the following conditions and lab measurements:
 - 1. Type 2 diabetes mellitus (diabetes mellitus without complications or type 2 diabetes mellitus without complications)
 - 2. Lab measurements of an A1C >8
 - Exclusion criteria:

i.

- Had the following conditions:
 - 1. Type 1 diabetes mellitus
 - 2. Type 1 diabetes mellitus without complications
- 2. Created a concept set by medication name to include all diabetic medications using medication concept ID. These medications were reconciled and combined into a new variable defining medication class based on mechanism of action/pharmaceutical class classification. Finally, a binary variable was created (Yes/No) based on the medication classes to reflect having an initial prescription of newer medications to be used as our outcome variable.
- Three tables were loaded using the Cohort Builder tool; demographics (386,404 Observations), medications (854,047 observations with repeated entries over time) and select survey questions. Data cleaning and re-coding were done to individual tables then the three tables were merged using the *person_id* variable (unique participant identifier).
- 4. The final dataset had 386,404 participants where only 386,317 had completed health insurance status (only 176.906 had a health utilization questionnaire on file) and 44,960 had their EHR prescription data on file.

Confounding variables used in this guide were re-coded to the following:

- Race (White: 1, Black or African American: 2, Asian: 3, Other: 4, more than one race: 5)
- Ethnicity (Hispanic or Latino: 1, non-Hispanic or Latino: 2, Other: 3)
- Gender (Female: 1, Male: 2, Not man only, not woman only, prefer not to answer, or skipped: 3)

Statistical analysis procedures

Step 1: Describe the variables to be evaluated for further analysis.

Example code:

```
proc freq data=demosurvey;
table insurance race;
run;
```

	Th	e FREQ P	rocedure	
insurance	Frequency	Percent	Cumulative Frequency	Cumulative Percent
	Freq	uency Mis	sing = 1748	
•	12573	3.27	12573	3.27
1	345648	89.86	358221	93.13
2	26435	6.87	384656	100.00

race	, 5 gr (white/bla	ck/Asian/no	one of the above	/more than one)
race	Frequency	Percent	Cumulative Frequency	Cumulative Percent
•	73063	18.91	73063	18.91
1	209263	54.16	282326	73.06
2	75797	19.62	358123	92.68
3	13762	3.56	371885	96.24
4	6999	1.81	378884	98.05
5	7520	1.95	386404	100.00

Step 2: Using cross tabulation and Pearson's Chi-square test to examine differences in distribution or interactions with our confounders.

Example code:

proc freq data=demosurvey; table insurance*gender / chisq; run;

	Frequency			Table of	insurance by gen	der Frequ	encies by row and n—You can add no to suppress these	col or values.
	Percent Row Pct			gender(gender, 3 gr (fema	le/male/other))		
	Col Pct	insurance		1	2	3	Total	
		•	0	4906	4630	3037	12573	
			0.00	1.28	1.20	0.79	3.27	
			0.00	39.02	36.82	24.15		
				2.10	3.28	29.75		
		1	0	215157	124000	6491	345648	
55.9% of t were	those insured females.	→	0.00	55.93	32.24	1.69	89.86	
			0.00	62.25	35.87	1.88		
				92.16	87.95	63.57		
		2	0	13389	12364	682	26435	
			0.00	3.48	3.21	0.18	6.87	
			0.00	50.65	46.77	2.58		
			-	5.74	8.77	6.68		
		Total	0	233452	140994	10210	384656	
			0.00	60.69	36.65	2.65	100.00	
				Freque	ncy Missing = 174	48		

Statistics for Tab (Rows and Columns	le of ins s with Ze	urance by gender ero Totals Exclude	d)
Statistic	DF	Value	Prob
Chi-Square	4	25028.3647	<.0001
Likelihood Ratio Chi-Square	4	11336.2543	<.0001
Mantel-Haenszel Chi-Square	1	682.8963	<.0001
Phi Coefficient		0.2551	
Contingency Coefficient		0.2472	
Cramer's V		0.1804	
Sample Frequence	e Size = cy Missin	384656 ng = 1748	

Step 3: Recoding the outcome variable.

Example code:

```
data meds6;/*5=SGLT2/6=GLP1/3=ddp4 and 7 are combined new formula*/
set meds5;
if medsclass=5 then GLPST=1;
else if medsclass=6 then GLPST=1;
else if medsclass=3 then GLPST=1;
else if medsclass=7 then GLPST=1;
else GLPST=2;
run;
proc freq data=meds6;
table GLPST;
run;
```

This recoding was done in the original medications table with the repeated observation and was used later coupled with the *person_ID* to drop duplicates keeping the first entry to highlight those with initial or first prescription type.

GLPST	Frequency	Percent	Cumulative Frequency	Cumulative Percent	91,549 entries / observations with
1	91549	10.72	91549	10.72	prescription for newer generation meds. Data set had repeated
2	762498	89.28	854047	100.00	observations per participant iD.

After dropping duplicate entries by person_ID and GLPST, we had 9,469 participants with newer initial prescription meds (21% of the total participants with EHR information on file).

Step 4: Use the **LOGISTIC** procedure to fit a two-way logit model for the effect of having insurance with race and gender as covariates.

Example code:

proc logistic data=demomedsurvey;/*running a demo logistic regression*/
class insurance (ref="2") race (ref="1") gender;
model GLPST= insurance race gender/ expb;
run;

Example results:

In this analysis, **PROC LOGISTIC** models the probability of no newer generation prescription medication (*GLPST*=No).

Testing Globa	I Null Hypoth	esis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSa
Likelihood Ratio	163.7480	9	<.0001
Score	163.8551	9	<.0001
Wald	163.1166	9	<.0001

Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSa	Exp(Est)
Intercept		1	-1.4463	0.0449	1035.6526	<.0001	0.235
Insurance	÷	1	0.0505	0.0552	0.8353	0.3607	1.052
insurance	1	1	0.1021	0.0334	9.3264	0.0023	1.108
race	÷	1	0.0760	0.0346	4.8318	0.0279	1.079
race	2	1	0.0818	0.0334	5.9801	0.0145	1.085
race	3	1	0.1173	0.0675	3.0238	0.0821	1.124
race	4	1	0.0378	0.0759	0.2480	0.6185	1.039
race	5	1	-0.2860	0.0972	8.6631	0.0032	0.751
gender	1	1	-0.0913	0.0299	9.3565	0.0022	0.913
gender	2	1	0.1773	0.0304	34.0660	<.0001	1.194

Step 5: The following **PROC LOGISTIC** statements illustrate the use of forward selection to identify the effects that differentiate the two GLPST responses. The option **SELECTION=FORWARD** is specified to carry out the forward selection. Notice that we did not specify a reference to illustrate the effect coding.

Example code:

proc logistic data=demomedsurvey;/*running same model with forward selection*/
class insurance race gender;
model GLPST= insurance race gender/ selection=forward expb;
run;

Forwar	d S	election F	Procedure
Mo	del C	onvergence	Status
Convergence	e crite	rion (GCONV	=1E-8) satisfied.
-2 Log L =	461	95.030	
Residual C	hi-So	quare Test	
Chi-Square	DF	Pr > ChiSq	
163.8551	9	<.0001	

				Summary o	of Forward Se	election
Step	Effect Entered	DF	Number In	Score Chi- Square	Rr > Ghisa	Variable Label
1	gender	2	1	121.1584	<.0001	gender, 3 gr (female/male/other)
2	race	5	2	23.5876	0.0003	race, 5 gr (white/black/asian/none of the above/more than one)
3	insurance	2	3	19.0377	<.0001	

Step 6: Finally, the following statements refit the previously selected model, except that reference coding is used for the **CLASS** variables instead of effect coding.

Example code:

ods graphics on;
proc logistic data=demomedsurvey plots(only maxpoints=none)=(oddsratio(range=clip));
class insurance race gender /param=ref;
model GLPST= insurance race gender Age / noor;
oddsratio insurance;
oddsratio race;
contrast 'insurance 1 vs 2' insurance 1 2 / estimate=exp;
contrast 'race 1 vs 2' race 1 - 2 / estimate=exp;
contrast 'race 1 vs 3' race 1-3 / estimate=exp;
contrast 'race 1 vs 4' race 1 -4 / estimate=exp;
effectplot / at(gender=all) noobs;
effectplot slicefit(sliceby=gender plotby=insurance / noobs;
run;

Testing Globa	Null Hypoth	esis:	BETA=0
Test	Chi-Square	DF	Pr > ChiSa
Likelihood Ratio	583.9328	10	<.0001
Score	564.8413	10	<.0001
Wald	556.7813	10	<.0001

Type 3 Analysis of Effects					
Effect	DF	Wald Chi-Square	Pr > ChiSa		
insurance	2	6.3294	0.0422		
race	5	64.8844	<.0001		
gender	2	61.9419	<.0001		
age	1	403.2809	<.0001		

Analysis of Maximum Likelihood Estimates							
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSa	
Intercept		1	-3.0230	0.1616	350.0462	<.0001	
insurance	÷	1	0.1067	0.0969	1.2138	0.2706	
insurance	1	1	0.1473	0.0593	6.1649	0.0130	
race	÷	1	0.3275	0.1175	7.7662	0.0053	
race	1	1	0.1399	0.1161	1.4519	0.2282	
race	2	1	0.3260	0.1170	7.7582	0.0053	
race	3	1	0.3721	0.1375	7.3184	0.0068	
race	4	1	0.2776	0.1440	3.7167	0.0539	
gender	1	1	0.0177	0.0841	0.0444	0.8331	
gender	2	1	0.2066	0.0848	5.9428	0.0148	
age		1	0.0196	0.000976	403.2809	<.0001	

	Odds Ratio Estimates and Wald Confidence Intervals						
	Odds Ratio	Estimate	95% Confid	6 Confidence Limits			
	insurance . vs 1	0.960	0.822	1.121			
_	insurance_ vs 2	1.113	0.920	1.345			
	insurance 1 vs 2	1.159	1.032	1.302			
Т	race_vs 1	1.206	1.135	1.282			
	race_ vs 2	1.002	0.937	1.071			
	race., vs 3	0.956	0.818	1.119			
	race. vs 4	1.051	0.880	1.256			
	race vs 5	1.388	1.102	1.747			
Г	race 1 vs 2	0.830	0.784	0.879	1		
L	race 1 vs 3	0.793	0.681	0.923			

Odds Ratio Estima	ates and Wald	Confidence I	ntervals	
Odds Ratio	Estimate	95% Confidence Limits		
race 1 vs 4	0.871	0.732	1.037	
race 1 vs 6	1.150	0.916	1.444	
race 2 vs 3	0.955	0.817	1.116	
race 2 vs 4	1.050	0.880	1.252	
race 2 vs 5	1.385	1.101	1.743	
race 3 vs 4	1.099	0.877	1.378	
race 3 vs 5	1.451	1.108	1.900	
race 4 vs 5	1.320	0.995	1.750	

		Co	ntrast Esti	mation and	Testing	Results	by Row		
Contrast	Туре	Row	Estimate	Standard Error	Alpha	Confi Lin	dence nits	Wald Chi- Square	Pr > ChiSc
insurance 1 vs 2	EXP	1	1.4938	0.2863	0.05	1.0260	2.1749	4.3853	0.0363
race 1 vs 2	EXP	1	1.0488	0.1289	0.05	0.8244	1.3344	0.1505	0.698
race 1 vs 3	EXP	1	0.9119	0.2162	0.05	0.5730	1.4511	0.1515	0.697
race 1 vs 4	EXP	1	0.7928	0.2795	0.05	0.3973	1.5820	0.4339	0.510
			Estir	nates and idual con	I tests o	of ws			

Additional resources

For additional information about using SAS Studio in the Researcher Workbench, explore the following articles: Exploring All of Us data using SAS Studio and How to run SAS in the Researcher Workbench.

Updated April 9, 2024