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Overview
This document details the All of Us Genome Centers (GC) and Data and Research Center
(DRC) quality control (QC) steps for genomic data in the research pipeline. This pipeline
removes or flags samples and variants in the genomic data that fail quality thresholds. We apply
these QC steps in the research pipeline before we release the genomic data for research use.
We, the All Of Us DRC, only describe QC processes that are performed analytically (i.e., after
the sample has been genotyped and sequenced). All descriptions and results are limited to the
v7 data release made available in the Researcher Workbench April 20, 2023, which contains
312,945 genotyping array (“array”) samples, 245,394 short read whole genome sequencing
(srWGS) samples with single nucleotide polymorphism, insertion, and deletion variant calls
(SNPs and Indels), 11,390 srWGS samples with structural variant (SV) calls, and 1,027 long
read whole genome sequencing (lrWGS) samples with SNP, Indel, and SV calls. The srWGS SV
samples and lrWGS samples are a subset of the srWGS SNP and Indel samples, which in turn
are a subset of the array data. The samples in the genomic data correspond to the All of Us
Curated Data Repository (CDR) release C2022Q4R9 (“v7”), though please see Known Issue
#1, as 20 array samples (less than 0.01%) and six srWGS samples (less than 0.01%) are
missing their corresponding CDR data. These pipelines are automated unless otherwise noted.
This document covers all genomic data types made available to researchers at this time
including small variants (SNPs and Indels), structural variants, raw data, and auxiliary data.
Small variants are available for array samples, srWGS samples, and lrWGS samples. Structural
variants are available for srWGS samples and lrWGS samples.

Audience: This document is intended for researchers using, or considering the use of,
the genomic data in the Researcher Workbench (RW). This document assumes knowledge of
sequencing, genotype arrays, common genomic data QC approaches, and the variant file
formats released in All of Us. We recommend that at a minimum researchers read the Known
Issues and the FAQ section below, even if they are not as concerned with the QC process.

Notes:
● Details of the processing (e.g., algorithms) are out of scope for this document.
● The locations of raw data are in the ‘Controlled CDR directory document’, published on

the User Support Hub [1]. Auxiliary data sample lists are also published on the User
Support Hub.

● The genomic data mentioned in this document requires Controlled Tier access to view.
To register for access, please go to https://www.researchallofus.org/register/

● A small number of array and srWGS SNP & Indel samples are missing their
corresponding CDR and Cohort Builder data and thus the sample counts are not the
same. Please see Known Issue #1 for more details.
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Executive Summary
On April 20, 2023, the All of Us Research Program released the genomic data of 312,945 array
samples, 245,394 srWGS samples, and 1,027 lrWGS samples in the Researcher Workbench
(RW) for use by researchers registered for Controlled Tier access. There are over 1.8M array
SNP and Indel sites, over 1.03B srWGS SNP and Indel sites, over 64 million long read SNP and
Indel sites on grch38_noalt, and over 73 million long read SNP and Indel sites on
T2T-CHM13v2.0. There are over 515,427 SVs called on the 11,390 srWGS sample cohort and
SVs called for each lrWGS sample. In addition to variant calls, raw data (IDAT files for array
data, CRAM files for srWGS data, BAM files for lrWGS data) and auxiliary files (predicted
ancestry, relatedness/kinship scores, functional annotation, and flagged samples) are available
in the RW through Controlled Tier access. Quality control processes, performed both
independently and across samples, indicate that these data are ready for general analysis. We
suggest researchers, at a minimum, read the Known Issues and FAQ sections below before
using the data.
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Introduction
All of Us is collecting biospecimens and generating genomic data for all participants who have
consented among its target of 1,000,000 participants. As the program continues, the DRC will
periodically release genomic data - in sync with planned CDR release timelines. This document
describes the third release of genomic data to All of Us researchers (v7) made available in the
RW on April 20, 2023. The genomic data contains 312,945 array samples, 245,394 srWGS
samples, 11,390 srWGS samples with SV calls, and 1,027 lrWGS samples from a diverse set of
participants (see Appendix A and Appendix B). Genomic data can be joined with other data
types (e.g. survey data) for analysis (Appendix C), though please see Known Issue #1. In this
document, we describe the QC processes applied to the array, srWGS, and lrWGS data. We
describe which processes were performed at the GCs and which were performed at the DRC
(see Appendix D), but for most researchers this demarcation has no practical significance.

This document is organized by data type and describes the QC processes performed. For each
data type, we will outline the consistency, single sample QC, and joint callset QC.

1. Consistency is the uniformity of protocols at each GC that reduce the probability of batch
effects and normalize the data across GCs. Descriptions in this document, for both QC
and sample processing, apply to all GCs unless otherwise noted.

2. Single sample QC are the QC processes for each sample independently to catch major
errors. If a sample fails these tests, it is excluded from the release and not reported in
this document. We also use these tests to confirm internal consistency between the
GCs and the DRC. These tests detect sample swaps, cross-individual contamination,
and sample preparation errors.

3. Joint callset QC are the processes executed on the joint callset, which use information
across samples to flag samples and variants. The QC steps are performed after single
sample QC, during creation of the joint callset. The flagged samples and variants are not
removed from the callset unless otherwise specified.

We have also performed data validation experiments, such as replicating GWAS results, but the
results are shown in other, upcoming documentation (see the User Support Hub [1] or Tutorial
Workspaces in the RW, the RW requires authorization to access).
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Arrays
There are 312,945 array samples in the v7 release. The SNP and Indel variants from array
samples are available in VCF, Hail, and PLINK formats. In addition, raw Array data is available
in IDAT format. The data is described in the ‘How the All of Us Genomic data are organized’
article on the User Support Hub [1]. The QC process for array data includes consistency and
single sample QC steps. Array data is not joint-called so no joint callset QC was performed.

Consistency across Genome Centers
The genome centers (GCs) established a consistent sample and data processing protocol for
array data generation to attenuate the likelihood of batch effects across GCs.

The GCs generate variant calls (VCFs) that are submitted to the DRC. The GCs use the same
lab protocols, scanners, software, and input files:

● GCs generate raw intensity data (.idat) using the same hardware (iSCAN scanners from
Illumina). These files will still contain biases across GCs.

● GCs normalize the raw intensity data onto the same scale. This process yields a
normalization transform for probe intensities, which are one of the inputs for variant calls.
The array cluster definition file (.egt) was updated between this release and the prior
release. This update was done to reduce variation across GCs. Each GC used the
newly defined clusters to generate variant calls as well as reprocessing array samples
from the prior release.

● GCs use identical pipelines to generate VCFs, including identical pipeline versions and
input parameters, where applicable. As a result, the VCFs contain the same information,
regardless of GC, including metadata about inputs.

Please see Appendix E for details.

Single Sample QC
For array samples, we perform sex concordance, call rate tests, and test cross-individual
contamination. These tests are designed to detect sample swaps and sample preparation errors
and are performed at the GCs. The list of specific QC processes and an overview of the results
can be found in Table 1. Some srWGS QC processes, such as Fingerprint Concordance, use
array data.

For more details about the array single sample QC process, including preparation, see
Appendix E.

Table 1 -- Array Single Sample QC processes

QC process Passing criteria Error modes
addressed

v7 release results
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Sex
concordance

Sex call is concordant with
self-reported sex at birth.
OR
Self-reported sex at birth
reported as “Other” or was not
reported

-Sample swaps All array samples are concordant.

*Other refers to a participant self-reporting
“Intersex”, “I prefer not to answer”, or
“none of these fully describe me”

Call rate > 0.98 (> 98%) -Sample
contamination
-Sample
preparation error

All array samples meet the threshold.

Cross-individ
ual
contamination
rate

No passing criteria -Sample
contamination
from another
individual

For arrays, we only report the
contamination rate, but do not filter array
samples, since the call rate is a proxy for
high levels of contamination.

Sex Concordance
We checked the computed sex against the self-reported sex assigned at birth for concordance.
We used gencall to determine the computed sex and CDR data for the self-reported sex
assigned at birth (Appendix F). If the two sources were not concordant, we assumed a potential
sample swap, removed the sample, and investigated the source of the swap.

Method
We call the gencall tool [2] v3.0.0 to make a call on the sex of the sample from the array data.
We use the Picard 2.26.0 tool, CollectArraysVariantCallingMetrics [3], to perform the actual
concordance check against the self-reported sex assigned at birth. If we do not have a “male” or
“female” for the sex assigned at birth, because the participant reported it as “Intersex”, “I prefer
not to answer”, “none of these fully describe me”, or skipped the question, we passed the sex
concordance check for that sample, regardless of the information from gencall. The sex
assigned at birth data from the CDR is described in Appendix F.

To generate sex calls from the array, we call gencall from the Illumina Array Analysis Platform
Genotyping Command Line Interface (iaap-cli):

Parameter Value Notes

Tool name “gencall”

Manifest file Bead pool manifest (BPM) Illumina-supplied file that contains
metadata (alleles, mapping information,
source, etc.) for all of the probes on the
genotyping array.

Cluster file Cluster file (EGT) Used for normalization of intensities
across GCs

-f Location of the IDAT (.idat) files

-i “1” Algorithm version
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--gender-estimate-call-rate-
threshold

-0.1 This effectively disables the sex
estimation.

To ensure concordance with the self-reported sex assigned at birth, we call
CollectArraysVariantCallingMetrics with the following parameters from the Picard toolkit:

Parameter Value

Tool name “CollectArraysVariantCallingMetrics”

INPUT Array single sample VCF

DBSNP "gs://gcp-public-data--broad-references/
hg38/v0/Homo_sapiens_assembly38.db
snp138.vcf"

Results
Since we catch sex concordance failures before including a sample in the release, all array
samples in the v7 release passed a sex concordance check. Note that 2.09% of array samples
passed the sex concordance check solely because they did not answer “male” or “female” on
the self-reported sex assigned at birth question. Appendix F has more details on this CDR
question and responses.

Call Rate

Method
The call rate is the number of successful variant calls divided by the number of probes. We
invoke the gencall tool [2] v3.0.0, as described above in the Sex Concordance QC process. The
gencall tool generates both sex calls and the call rate. We also invoke
CollectArraysVariantCallingMetrics with the same parameters as the above section to extract
the call rate metric from the VCF header.

We applied a threshold of 0.98 to the call rate for inclusion in the v7 release.

Results
As seen in Figure 1, we did not include any samples that were below the call rate threshold of
0.98. See Figure 2 for cross-GC call rate frequencies. Please note that differences in call rates
between males and females will cause a double peak in call rate frequencies, since sites on
chrY will have a lower call rate for females.
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Figure 1 -- Histogram of the array call rate for the v7 release.

Figure 2 -- Call rate across each GC.

Cross-Individual Contamination Rate
For all samples, we estimate the proportion of data coming from an individual other than the one
being processed, referred to as the contamination rate. For array samples, as the contamination
rate increases, we expect a lower call rate. We fail array samples for a call rate that does not
meet the threshold.

11



Method
We use BAFRegress [4] to estimate the contamination rate in our array data. We do not use the
cross-individual contamination rate to filter array samples, and we do not process the
corresponding WGS aliquots for any array sample with a contamination greater than 10%. We
filter samples based on the call rate, which is a proxy for contamination and other errors, such
as sample preparation errors. Note that most samples with a contamination rate greater than
10% will also not meet the call rate threshold.

We extract allele frequency information from the array VCF and convert it into the file format
expected by BAFRegress. We then invoke BAFRegress with the following parameters:

Parameter Value

task “estimate”

freqfile Allele frequency information for all sites, which was
extracted from the single sample array VCF.

Results
We estimated the contamination rate below 0.11 for all array samples. As the contamination
rate increased, we did see a small decrease in the call rate (see Figure 3). Of the 312,945 array
samples, 309,972 (99.0%) had an estimated contamination rate below 3.0% and 303,044
(96.8%) had a contamination rate less than 1%.

Figure 3 -- Histogram of the array contamination rate estimates vs call rate. As the
contamination rate increases, the call rate decreases.
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Short Read Whole Genome Sequencing (srWGS)

Consistency across Genome Centers
The GCs use the same protocol for library construction (PCR Free Kapa HyperPrep), sequencer
(NovaSeq 6000), software (DRAGEN v3.4.12), and software configuration. The software
produces the metrics that are consumed by the sample QC processes. For more information
about the sequencing processes used by the GCs, see previous work [5] and the NIH All of Us
Research Program’s Return of Genetic Results FDA IDE (G200165).

Single Sample QC
The list of specific QC processes for srWGS samples and an overview of the results can be
found in Table 2. Our WGS single sample QC uses the same sequencing process described
previously [5] and in the NIH All of Us Research Program’s Return of Genetic Results FDA IDE
(G200165). Most thresholds in our single sample QC process are identical to the clinical
pipeline described previously [5], except for a higher contamination rate.

In some cases, we perform these tests twice for two reasons: 1) to confirm internal consistency
between the GCs and the DRC and 2) to mark samples as passing (or failing) QC based on the
research pipeline criteria. In this document, we are focused on downstream analytical QC
processes after a sample has been sequenced, thus, there are some upstream processes not
described here. The list of specific QC processes and an overview of the results can be found in
Table 2.

Table 2 -- srWGS Single Sample QC processes
QC process Calculated at the

DRC or GCs?
Passing criteria Error modes

addressed
v7 release results

Fingerprint
concordance

Both log-likelihood ratio > -3 -Sample swaps
-Large amount of
sample
contamination

All srWGS samples are
concordant with array
samples.

Sex
concordance

Both Sex call is concordant with
self-reported sex at birth.
OR
Self-reported sex at birth
reported as “Other” or was
not reported

-Sample swaps All srWGS samples are
concordant.

*Other refers to a
participant self-reporting
“Intersex”, “I prefer not to
answer”, or “none of
these fully describe me”

Cross-individu
al
contamination
rate

Both < 0.03 (< 3%) Sample
contamination
from another
individual

All srWGS samples meet
the threshold.

srWGS samples with
corresponding arrays
that have a
contamination rate above
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10% were not released.

Coverage GCs only ≥ 30x mean coverage

≥ 90% of bases at 20x
coverage

≥8e10 aligned Q30 Bases

≥ 95% at 20x in regions of
the 59 AoU Hereditary
Disease Risk genes
(AoUHDR) See Appendix
G for more information

-Sample
preparation error
-Poor sensitivity
and precision of
variant calling

All srWGS samples meet
the thresholds.

Fingerprint Concordance

Method
We filter variant calls to 113 sites (“fingerprint”) for both the array and srWGS SNP & Indel
variants. We measure the concordance between the array and WGS data, using a
log-likelihood ratio (fingerprint LOD) based on reads. We chose the threshold value, -3.0, to
split a bimodal distribution (not shown). If the calls are not concordant (i.e., the fingerprint LOD
does not meet the threshold), then there has likely been a sample processing error. A detailed
description of fingerprint concordance is described in the Genome Analysis Toolkit
documentation [6].

Note: *One GC (Broad Institute) performed an internal check against a different fingerprint
(Fluidigm SNP genotyping (SNPtype chemistry) using the 96.96 Dynamic Array), which did not
use the same fingerprint sites as the array. The DRC treated these samples the same as from
the other GCs and ran the array concordance as described in the main text of this document.

We call the fingerprint concordance tool “CheckFingerprint” using Picard (version 2.23.9) with
the following parameters:

Parameter Value

program name “CheckFingerprint”

INPUT The WGS cram to check concordance

REFERENCE_SEQUENCE “gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_a
ssembly38.fasta”

GENOTYPES VCF from corresponding array file

HAPLOTYPE_MAP “gs://gcp-public-data--broad-references/hg38/v0/aou/fp/aou.fp.hapl
otype_database.txt”

IGNORE_READ_GROUPS “true”
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SAMPLE_ALIAS Chipwell barcode from the header of the array file (array file
passed in the GENOTYPES parameter)

Note: Quoted parameters are exact values, but quotes were not included in the actual call to the
tool.

Results
All samples in the v7 release passed the fingerprint concordance check based on arrays. As
seen in Figure 4, the passing samples exceeded the threshold. 1490 samples had a fingerprint
LOD [6] less than 45 and the minimum fingerprint LOD was 13.

Figure 4 -- Distribution of the Fingerprint LODs for srWGS v7 samples

Sex Concordance
For srWGS data, we compared the computed sex from DRAGEN (Appendix H) and peddy [7]
against the self-reported sex assigned at birth (Appendix F). If the two sources were not
concordant, we assumed a potential sample swap, removed the sample, and investigated the
source of the swap.

Method
We compared variant and ploidy calls for chromosome X and Y against the self-reported sex
assigned at birth for the sample. We check the sex ploidy call (e.g., XY or XX) from the
DRAGEN pipeline (v 3.4.12) and use heterozygous chrX variant calls from peddy [7]. If the
concordance test fails against either of these calls, the sample fails QC and is not included in
the release. If we do not have a “male” or “female” for the sex assigned at birth, because the
participant reported it as “Intersex”, “I prefer not to answer”, “none of these fully describe me”, or
skipped the question, we passed the sex concordance check for that sample, regardless of the
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information from peddy and DRAGEN. The sex assigned at birth data from the CDR is
described in Appendix F.

DRAGEN invocations include a wide breadth of functionality, including ploidy calls (see
Appendix H for the parameters).

The DRAGEN pipeline outputs a single sample VCF, which is primarily used in the clinical
pipeline (for individual samples)[5], but we use it for our call to peddy. We call peddy with the
following parameters:

Parameter Value

vcf Single sample VCF from DRAGEN (hard-filtered)

Pedigree file We create this file dynamically based on the single sample and its
sex call. Please note: This implies that we do not use pedigree
information in our peddy call.

Results
We do not include any srWGS samples that fail the sex concordance check in the released
samples. It is important to note that some samples automatically passed this check solely
because they did not answer “male” or “female” on the self-reported sex assigned at birth
question (2.07% of srWGS samples). Appendix F has more details on this CDR question and
the possible responses.

Cross-Individual Contamination Rate
For all srWGS samples, we estimate the proportion of data coming from an individual other than
the one being processed, referred to as the contamination rate.

Method
We estimate the percent contamination from another individual by counting the number of reads
at common homozygous alternate SNP sites. If there is a small amount of cross-individual
contamination, we expect to see small numbers of reads supporting SNPs at these sites. We
determine the percentage of the sample that may have come from a different individual using
VerifyBamID2 [8], and the DRAGEN 3.4.12 pipeline. Contamination rate is a float value from
0.0 to 1.0, which represents 0 to 100%.

We use the following parameters for VerifyBamID2:

Parameter Value

NumPC “4”
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BamFile WGS cram file

Reference “gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_assembly38.fasta”

UDPath “gs://gcp-public-data--broad-references/hg38/v0/contamination-resources/1000g/1000g.phase3.
100k.b38.vcf.gz.dat.UD”

BedPath “gs://gcp-public-data--broad-references/hg38/v0/contamination-resources/1000g/1000g.phase3.
100k.b38.vcf.gz.dat.bed”

MeanPath “gs://gcp-public-data--broad-references/hg38/v0/contamination-resources/1000g/1000g.phase3.
100k.b38.vcf.gz.dat.mu”

Verbose specified

Please see Appendix H for the DRAGEN command line parameters, as the command line
contains multiple functions, including calculating contamination.

Results
The hard threshold for contamination was 0.03 for the research pipeline, higher than 0.01 for the
clinical pipeline [5].

We did not include any samples with a contamination larger than 0.018 and only three samples
greater than 0.015. Figure 5 demonstrates the frequency of the contamination estimates for
samples in the v7 release.
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Figure 5 -- srWGS contamination estimates from both sources (DRAGEN and VerifyBamID2).
DRAGEN rounds the contamination estimate to three decimal places. Note the log scale of the
counts (y-axis). Over 89.0% and 91.4% of srWGS samples had contamination estimates lower
than 1e-4 by VerifyBamID2 and DRAGEN, respectively.

Coverage

Method
Coverage is defined as the number of reads covering the bases of the genome. Maintaining
coverage is important for consistent statistical power and accurate variant calling. We apply
several thresholds (summarized from the FDA IDE (G200165)):

● Mean coverage (threshold ≥30x) - This is the mean number of overlapping reads at
every targeted base of the genome. Accuracy steadily decreases as mean coverage
decreases, with a rapid decrease below 20x coverage, supporting a stringent threshold
selection of a minimum of 30x.

● Genome coverage (threshold ≥90% at 20x) - Accuracy steadily decreases as the percent
of bases with at least 20x coverage drops. Drop-off of performance is initially gradual,
supporting a threshold of 90%.

● All of Us Hereditary Disease Risk gene (AoUHDR) coverage (threshold ≥95% at 20x) -
For clinically relevant areas of the genome, we insist on higher mean coverage to ensure
a higher calling accuracy. As we reduce the coverage in the AoUHDR region, the
reduction in performance is slow initially but increases rapidly below 40%, showing that
the threshold of 95% is conservative.

● Aligned Q30 bases (threshold ≥8e10) - All bases in the sequencing reads get a quality
assignment, which is phred scaled (Q30 → probability of error is 0.001) [9]. As lower
base quality counts increase, we see a reduction in accuracy with an inflection point
starting around 6e10.
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Results
As seen in Figure 6, all srWGS samples exceed the thresholds that we set as part of the
research pipeline. We had 281 (0.1%) samples with mean coverage greater than 70x.

Figure 6 -- Coverage metrics for the v7 release srWGS samples. The orange line is the
threshold for each metric. There are 281 samples (0.1%), with mean coverage greater than
70x, that are not included in the mean coverage (upper left) nor aligned q30 bases (lower right)
plots. As expected, these samples were outliers in the number of aligned q30 bases (i.e.,
higher base count than samples with lower mean coverage).

Short-read WGS SNP & Indel Joint Callset QC

The srWGS small variants are delivered as a joint callset and the QC steps in this section are
performed on the joint callset, not individual samples [10]. Please note that the QC steps
described here apply during creation of the srWGS joint callset, after single sample QC. The
joint callset is available in the RW and other auxiliary information (including lists of flagged
samples) is available through the User Support Hub [1]. The joint callset QC process is similar
to that of gnomAD 3.1 [11], though not exactly the same. See a summary of the joint callset QC
steps in Table 3. Sample QC is performed before Variant QC.

We flag samples or variants as failing QC, rather than removing them from the callset, since we
could not validate whether samples (especially population outliers) were problematic or were
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just a part of a poorly-sampled ancestry. Flagged variants can also be a result of poorly-sampled
ancestry.

Table 3 -- srWGS SNP & Indel joint callset QC summary
QC process Sample or

variant QC
Error modes
addressed

v7 release results

Sample Hard
Threshold Flag

sample Extremely noisy
samples

No samples flagged.

Sample Population
Outlier Flag

sample Noisy samples 551 samples flagged (0.2%).

Based on regressing out the PCAs from callset
metrics, such as snp_count.

Variant Hard
Threshold Filters

variant Artifacts that cannot
be detected in a
single sample

This has a simple implementation with high
precision, which saves compute for downstream
variant filtering.
59,496,403 were filtered
972,115,272 were not filtered

Allele-Specific
VariantQualityScore
Recalibration
(AS-VQSR)

variant Artifacts that cannot
be detected in a
single sample

See [12].

Sensitivity and
Precision Evaluation

both Poor variant detection See Appendix I for a list of samples.

Auxiliary processes

Ancestry sample Flagging sample
outliers and allows
calculation of
population level
metrics, such as allele
frequency (AF).

Error rate from holdout set (incl. Other): 0.046
Error rate from holdout set (not incl. Other): 0.002
Concordance vs self-reported: 0.915
See Appendix A.

Number of independent, bi-allelic sites
(“high-quality sites”) used: 151159
See Appendix J.

Relatedness and
maximal
independent set of
samples

sample Related samples,
which confound
analyses

19374 related pairs and 15376 samples in the
maximal independent set.

See Appendix K.
This process produces a list of the sample pairs
with kinship score, calculated by Hail [13]. No
samples are removed from the callset, but this
allows researchers to easily remove a minimal set
of samples to eliminate related samples in the
callset.

Sample Hard Threshold Flag

We flag srWGS individual samples based on these sample-level QC metrics. The flagged
samples can be found in a list on the User Support Hub [1].
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Method
We initially flagged any samples with strong erroneous signals. We calculated all metrics using
autosomal territory only. The criteria for being eliminated as “obviously erroneous”:

● number of SNPs: < 2.4M and > 5.0M
● number of variants not present in gnomAD 3.1: > 100k
● heterozygous to homozygous ratio (SNPs and Indel separately): > 3.3

Results
We did not flag any samples for failing hard thresholds.

Sample Population Outlier Flag

We flag srWGS individual samples based on the population outlier data. The flagged samples
can be found in a list on the User Support Hub [1].

Method
As part of ancestry prediction (see Appendix A), we regressed out sixteen principal component
features computed and used the residuals to determine the outliers. We define outlier samples
as being eight median absolute deviations (MADs) away from the median residual in any of the
following metrics:

i. number of deletions
ii. number of insertions
iii. number of SNPs
iv. number of variants not present in gnomAD 3.1
v. insertion : deletion ratio
vi. transition : transversion (TiTv) ratio
vii. heterozygous to homozygous ratio (SNPs and Indel separately)

Results
We flagged 551 (0.2%) samples as outliers based on at least one of the above criteria (See
Table 4). Plots of the first principal components against these eight metrics can be found in
Appendix L.

Table 4 -- srWGS SNP & Indel population outlier sample counts

Metric(s) considered Flagged sample
count

Indel heterozygous to homozygous ratio 307

Deletion count + Indel heterozygous to homozygous
ratio + Insertion count + SNP count 74

Indel heterozygous to homozygous ratio + SNP 48

21



heterozygous to homozygous ratio

Indel heterozygous to homozygous ratio + SNP count 41

Variants not present in gnomAD 3.1 count 28

Deletion count + Indel heterozygous to homozygous
ratio + SNP count 26

SNP heterozygous to homozygous ratio 17

Ti/Tv ratio + Variants not present in gnomAD 3.1 count 5

Indel heterozygous to homozygous ratio + Variants not
present in gnomAD 3.1 count 3

Ins/del ratio 1

Indel heterozygous to homozygous ratio + SNP count +
SNP heterozygous to homozygous ratio 1

Total 551

Variant Hard Threshold Filters
These site-level QC metrics for the srWGS SNP & Indel callset will flag variants, appearing as
filtered in the site level filters of the VDS and VCF (filters in the VDS, FILTER in the VCF).
These variants will still be included in cohorts, including in the Cohort builder.

Method
If a variant does not meet the following criteria, it will be filtered:

● No high-quality genotype (GQ≥20, DP≥10, and AB≥0.2 for heterozygotes) called for the
variant.

○ Allele Balance (AB) is calculated for each heterozygous variant as the number of
bases supporting the least-represented allele over the total number of base
observations. In other words, min(AD)/DP for diploid GTs.

○ Filter field value: NO_HQ_GENOTYPES
● ExcessHet < 54.69

○ ExcessHet is a phred-scaled p-value. We cutoff of anything more extreme than
a z-score of -4.5 (p-value of 3.4e-06), which phred-scaled is 54.69

○ Filter field value: ExcessHet
● QUAL score is too low (lower than 60 for SNPs; lower than 69 for Indels)

○ QUAL tells you how confident we are that there is some kind of variation at a
given site. The variation may be present in one or more samples.
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○ Filter field value: LowQual

Results

Unfiltered variants will have “.” or PASS in the site level filters fields in the srWGS joint callset
SNP & Indel VCFs, VDS, and Hail MTs. Filtered variants will have the filter name in the site level
filters of the VCF, VDS, or Hail MT (FILTER or filters). We recommend that researchers do
not include variant sites that were filtered in their analyses. The variant counts can be found in
Table 5.

Table 5 -- srWGS SNP & Indel variant hard threshold filter counts

Filters Numbers

None 972115272

'NO_HQ_GENOTYPES' 33526160

'NO_HQ_GENOTYPES', 'LowQual' 22245268

'LowQual' 3064830

'ExcessHet' 659051

'NO_HQ_GENOTYPES', 'ExcessHet' 1094

Allele-Specific Variant Quality Score Recalibration (AS-VQSR)
These genotype-level QC metrics for the srWGS SNP & Indel callset will flag variants. The
AS-VQSR tool scores genotypes, at some sites only some genotypes are filtered whereas at
other sites all genotypes are filtered. We do not report the AS-VQSR scores in the srWGS SNP
& Indel callset, we only report whether or not a genotype or variant is filtered.

A filtered genotype will appear as filtered in the genotype level filter (FT) in the VCF, VDS, and
Hail MT. In the VDS, FT will contain True for PASS and False for FAIL. In the VCF or Hail MT,
FT will contain PASS or FAIL. If all genotypes fail the AS-VQSR filtering at a variant site, the site
will be filtered in the VDS filter field (filters) or the VCF/Hail MT filter field (FILTER). All
variants will still be included in cohorts, including in the Cohort builder.

Method
As part of the joint calling, we will filter variants with Allele-Specific Variant Quality Score
Recalibration (AS-VQSR or VQSR) [12]. This filtering technique uses machine learning to
identify variants across samples that are likely artifacts. We used the following annotations as
features for training:

● Variant Confidence/Quality by Depth (AS_QD)
● Z-score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities

(AS_MQRankSum)
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● Z-score from Wilcoxon rank sum test of Alt vs. Ref read position bias
(AS_ReadPosRankSum)

● Phred-scaled p-value using Fisher's exact test to detect strand bias (AS_FS)he
● RMS Mapping Quality of reference vs alt reads (AS_MQ) [SNPs only]
● Symmetric Odds Ratio of 2x2 contingency table to detect strand bias

(AS_SOR)

We used the default training sets as described in the GATK documentation [14] and Table 6.
Training sets are flagged as true or training sites and assigned an initial prior likelihood score.
Details of these parameters can be found in the GATK documentation [12,14], and the sites can
be found as public resource downloads for the GATK [15].

Table 6 – srWGS SNP and Indel AS-VQSR training and truth datasets
Training Set
Name

SNP or
Indel

Truth Training Prior
Likelihood

Description

Omni [16] SNP True True Q12 (93.69%) This resource is a set of polymorphic SNP
sites produced by the Omni genotyping
array.

HapMap [17] SNP True True Q15 (96.84%) This resource is a SNP callset that has
been validated to a very high degree of
confidence.

1000 Genomes
[18]

SNP False True Q10 (90%) This resource is a set of high-confidence
SNP sites produced by the 1000 Genomes
Project.

Mills [19] Indel True True Q12 (93.69%) This resource is an Indel callset that has
been validated to a high degree of
confidence.

Axiom [18] Indel False True Q10 (90%) This resource is an Indel callset based on
the Affymetrix Axiom array on 1000
Genomes Project samples.

Sensitivity and Precision Evaluation

Method
In the callset, we included four well-characterized control samples (four Genomes-in-a-Bottle
samples (GiaB) [20] from HapMap [17] and Personal Genome Project; see Appendix I), which
we can use to determine sensitivity and precision. The samples were sequenced with the same
protocol as the All of Us samples. These samples do not appear in any user data (e.g., cohorts
built using the RW).

We use the high confidence calling region, defined by GiaB v4.2.1, as the source of ground
truth. In order to be called a true positive, a variant must match the chromosome, position,
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reference allele, and alternate allele. In cases of sites with multiple alternate alleles, each
alternate allele is considered separately.

Results
Sensitivity and precision results can be seen in Table 7.

Table 7 -- Sensitivity and precision measurements for control samples using the All of Us
sequencing protocol

Variant type Sample Sensitivity Precision

SNV HG-001 0.995 >0.999

HG-003 0.988 >0.999

HG-004 0.988 >0.999

HG-005 0.989 >0.999

Indel HG-001 0.987 0.996

HG-003 0.985 0.997

HG-004 0.986 0.998

HG-005 0.994 0.999
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Short Read Structural Variants (srWGS SVs)
Short read structural variant calling was performed on 11,390 srWGS samples. The samples are
a subset of the v7 srWGS samples with SNP and Indel variant calls. All srWGS samples
followed the Consistency across Genome Centers and Single Sample QC processes. See those
sections for an overview of the CRAM-level QC processes before structural variant calling and
analysis. We used GATK-SV to call structural variants, which has been previously described
[21]. Further technical information can be found in Appendix M.

GATK-SV discovers structural variants (SVs) of the following types: deletion (DEL) and
duplication (DUP), which can together be described as copy number variants (CNV); insertion
(INS); inversion (INV); translocation (CTX); complex event (CPX); unresolved breakend (BND);
and multiallelic CNV (we refer to them as MCNV in this document but their SV type in the VCF is
CNV). See [22] for more information on SV types and their evidence signatures.

Sample Selection for srWGS SVs
We initially selected 12,000 samples for SV calling from the v6 srWGS release and v7 lrWGS
samples. We generated the participant list for srWGS SV calling before the final v7 srWGS SNP
and Indel list was created. We did not expect to release all 12,000 selected samples due to
stricter QC criteria for srWGS SV calling and dropping samples that were in the srWGS v6
sample set but not in v7 (e.g., participant withdrew) (Table 8). A total of 570 v7 srWGS SNP and
Indel samples failed the QC criteria of the srWGS SV callset.

Among the 12,000 selected samples, 1,010 samples were selected because they were in the v7
lrWGS cohort. Among these lrWGS samples, 989 passed all SV QC and made it into the v7
srWGS SV callset. An additional 1,253 samples were included because they were selected for
future long read sequencing. The remaining 9,737 samples of the 12,000 were randomly
selected from the v6 srWGS data (C2022Q2R2).

Table 8 -- Selected samples that were excluded from v7 srWGS SV calling

srWGS SV sample exclusion
steps

Number of samples filtered
from initial count
(N=12000)

Notes

Single sample QC 561 See Table 9 and Table 10

Joint SV callset refinement and
QC

9 Only the Outlier Removal step filters
samples.

Other 40 These are v6 srWGS samples that
were not included in v7 for reasons
unrelated to SV calling (e.g.,
participant withdrew between
releases)
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Single Sample QC for srWGS SVs
We performed single sample QC, as described in Table 9 and Table 10, on all 12,000 selected
samples. We removed a total of 561 samples during srWGS SV single sample QC, which left
11,439 samples remaining in the callset for downstream processing.

Basic Filters

Method

As seen in Table 9:

1. We performed a cross-individual contamination check following the same protocol that
we used for the srWGS SNP and Indel analysis but with a more stringent passing criteria
of 0.5%.

2. We checked the mean insert size of each srWGS sample using the Picard tool
CollectInsertSizeMetrics and removed five samples that were outside of the range
370-700.

3. We checked the whole genome dosage (WGD) [21] to identify samples that were outliers
for dosage bias, i.e. whose coverage across the genome was highly variable.
Non-uniformity of coverage negatively impacts copy number variant (CNV) calling.
Samples with a WGD score more than six times the median absolute deviation (MAD)
outside the median were removed, where 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑊𝐺𝐷

𝑖
 –  𝑚𝑒𝑑𝑖𝑎𝑛(𝑊𝐺𝐷)|).  

4. We counted the number of non-diploid 1 megabase (Mb) bins in each sample. If the
number of bins exceeded our threshold (500), we believed that the coverage would be
too variable for accurate CNV calling,

5. We filtered samples with outlier SV counts from the SV calling tools Manta [23], Wham
[24], and MELT [25] relative to the other samples in the cohort. Higher than typical SV
counts may signify technical artifacts. SV counts were stratified by SV caller,
chromosome, and SV type, and samples that were outliers in 30 or more categories
were removed from the callset.

6. We dropped any samples that could not successfully complete our workflows.

We removed all samples that failed any of these filters, counted in Table 9. Note that some
samples failed multiple filters.

Results
The results for all six basic single-sample filtering steps are summarized in Table 9. Three
samples had an issue with the DRAGEN 3.4.12 pipeline, which the GCs used to generate all v7
srWGS data. This rare issue caused incorrect formatting in gVCF fields that are required by the
srWGS SV evidence collection steps. As a result, our pipelines reported an error for these
samples. We did not believe that the effort to recover the samples was commensurate with the
gain in sample count (0.03%) for this release. This issue has been fixed in subsequent versions
of the DRAGEN pipeline (e.g., 3.7.8).
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Table 9 -- srWGS SV single sample QC: Basic filters
QC process Passing criteria Error modes addressed Number of

samples
removed

Notes

Cross-individual
contamination

≤ 0.005 (≤ 0.5%) Sample contamination from
another individual

316 Same method as
srWGS SNP and
Indel QC, see
Cross-individual
contamination rate

Mean insert
size

Mean insert size in range
[320, 700]

Insert size outliers, which
could skew distributions of
discordant pairs

5 Picard’s
CollectInsertSizeMet
rics within GATK’s
CollectMultipleMetric
s

Whole genome
dosage (WGD)

WGD within 6*MAD of
the median, approx.
[-0.159, 0.131]

Samples with high
variability in coverage
across the genome, which
could lead to unreliable
CNV calling from depth
evidence

175 Method can be
found in [21]

Number of
non-diploid 1Mb
bins

≤ 500 Samples with high
variability in coverage
across the genome, which
could lead to unreliable
CNV calling from depth
evidence

205

SV count
outliers

Sample is an outlier < 30
times across bins of SV
caller, SV type, and
chromosome

Samples with unusually
high raw SV counts after
initial SV discovery, which
could introduce large
numbers of false positive
calls to the callset

11

Processing
failure

Sample must complete
processing

Upstream issues from
srWGS SNV calling that
affect the srWGS SV
deliverables

3 All of these failures
were due to a (rare)
issue in the
DRAGEN 3.4.12
pipeline where
records in a gVCF
can be improperly
formatted.
This issue has been
addressed in
subsequent versions
of the DRAGEN
pipeline.
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Ploidy estimation

Method
We estimated ploidy per chromosome across all 12,000 samples by binning read counts in 1Mb
intervals and normalizing by half the genome-wide median. We only performed filtering based
on ploidy (Table 10) on samples that passed the basic filters (Table 9).

Results
We filtered less than 20 samples because they had an estimated copy number greater than 2.3
on one autosomal chromosome. Plots of binned coverage across these chromosomes
demonstrated that these samples appeared to have mosaic autosomal aneuploidies. We do not
provide the exact count of samples in this document to comply with All of Us policy [26]. If you
need the exact count and/or the specific samples, we provide the list of samples with mosaic
aneuploidy on autosomes in the Controlled Tier; for more details see the ‘Controlled CDR
directory document’ on the User Support Hub [1].

Sex Concordance

Method

Using the ploidy estimation process detailed above, we estimated the ploidy for allosomes to
infer sex for each of the 12,000 samples. For each sample, the computed sex was compared to
the self-reported sex at birth to evaluate concordance as a check for potential sample swaps.
Samples with mosaic loss of chrX or chrY were grouped with males or females as described
below. Samples passed this check if the computed sex matched the self-reported sex assigned
at birth, if there was a predicted germline aneuploidy of an allosome, or if the participant did not
respond or selected an answer other than “male” or “female” for the sex assigned at birth
question in the Basics survey. Because we were looking for sample swaps, we chose these
cutoffs in order to prevent unnecessarily removing samples. Participants can report “Male”,
“Female”, “Intersex”, “I prefer not to answer”, “none of these fully describe me”, or skip the
sex_at_birth question. Please refer to Appendix F for more details.

Results

All samples passed this check, indicating no sample swaps based on the computed sex.

We observed likely mosaic loss of chrX and chrY in 100 samples; these samples had an
estimated copy number of 0.1-0.8 on chrY and 1.5-1.8 on chrX. These samples are likely to
have mosaic loss of chrX or chrY, but the low copy number could also be due to large deletions
on these chromosomes. These samples were retained in the callset and grouped with males (if
chrX rounded ploidy = 1 and chrY ploidy > 0.1) and females (if chrX rounded ploidy = 2) for the
sex-specific steps of the GATK-SV pipeline. A list with the 100 samples is available; for more
details see the ‘Controlled CDR directory document’ on the User Support Hub [1].
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We found less than 20 samples with predicted germline sex chromosome aneuploidies (i.e.
computed sex ploidy other than XX, XY, or mosaic) and a list of these samples is available; for
more details see the ‘Controlled CDR directory document’ on the User Support Hub [1]. These
samples were classified as “other” for the sex-specific steps of the GATK-SV pipeline and SV
calls were not made on chrX or chrY for these samples.

Table 10 -- srWGS SV single sample QC: Ploidy estimation filters
QC process Passing criteria Error modes addressed Number of

samples
removed

Notes

Estimated copy
number per
autosome
(Ploidy
estimation)

≤ 2.3 Samples with mosaic
autosomal aneuploidies,
which could skew
distributions of SV
evidence classes

≤ 20 Calculated after
applying all above
filters.
Method can be
found in [21]

Sex
concordance

Computed sex is
concordant with
self-reported sex at birth.
OR
Computed sex is neither
male nor female.
OR
Self-reported sex at birth
reported as “Other”* or
was not reported

Sample swaps 0 All samples passed
this check

*Other refers to a
participant
self-reporting
“Intersex”, “I prefer
not to answer”, or
“none of these fully
describe me”

Batching
We divided the samples into 24 batches with an average of 477 samples in each batch for the
batched analysis steps of the GATK-SV pipeline, depicted in Figure 8. Batching controls for
technical variability between samples and parallelizes computation. The batching procedure
was as follows:

1. Split by chrX ploidy (<1.5 and ≥1.5)
2. Split each partition of samples from the previous step four ways by mean insert size
3. Split each partition three ways by whole genome dosage (WGD) score
4. Split each partition two ways by median coverage
5. Merge corresponding partitions by chrX ploidy to balance chrX ploidy within batches

The batching scheme was based on previously described methods [21], except for the addition
of the mean insert size as a batching parameter. We added this to address an observed
multimodal distribution of mean insert size (Figure 7). The multimodal distribution of mean insert
size across samples was investigated and found to stem from differences between Chemagen
and Autogen extraction protocols. Differences in insert size could impact the distribution of
discordant pair counts across samples during genotyping, so samples with similar mean insert
sizes were batched together to improve genotyping accuracy.
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Figure 7 -- Mean insert size across the 12,000 srWGS samples initially selected for SV calling.

Joint Callset Refinement and QC for srWGS SVs
The steps to generate the GATK-SV joint callset, including refinement and filtering, are
described in Figure 8 and Appendix M. Below, we describe refinement and filtering steps
introduced in the v7 srWGS release (blue steps in Figure 8) that were not published previously
or are modifications to canonical GATK-SV pipelines. These steps include both hard and soft
filters at the sample, site, and genotype level (Table 11).
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Figure 8 -- GATK-SV Pipeline Schematic. GATK-SV automated workflows are shown in gray
and the names correspond to the name of the Workflow Definition Language (WDL) file. Manual
steps performed in notebooks or requiring user input are shown in orange. Steps in blue are
custom VCF refinement and QC steps for All of Us.

Table 11 -- GATK-SV VCF refinement and filtering steps unique to All of Us
QC process Sample,

variant,
or
genotype
QC

Filter tag Error modes
addressed

Notes

Remove unique
Wham deletions

Variant False positive
deletions

Variants removed from callset

Outlier removal Sample Noisy samples Samples removed from callset

Genotype filter Genotype False positive
genotypes for
INS, INV, DEL,
and DUP

Filtered genotypes are set to no-call
(./.)

No-call rate
(NCR)

Variant HIGH_NCR INS, INV, DEL, or
DUP sites that
have many false
positives and are
likely to be
technical artifacts
or difficult to
genotype
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Batch Effect
Correction

Variant VARIABLE_ACR
OSS_BATCHES

Technical artifacts
from batch effects

Multiallelic
CNVs

Variant False positive
MCNVs

Multiallelic CNVs <5 kilobases (kb) in
length were removed from the callset.

Mobile element
deletions

Variant Rescue mobile
element deletions
previously
marked
UNRESOLVED

Mobile element deletions detected in this
step were revised to PASS, the SVTYPE
field was set to DEL, and the ALT field
was set to describe the type of mobile
element deletion

CPX and CTX
precision
improvement

Genotype False positive
CTX and CPX

Filtered genotypes are set to no call
(./.)

Manual curation
of large CNVs

Variant
and
genotype

Large CNVs that
are false
positives, have
inaccurate
breakpoints, or
are multiallelic

Revisions are found in the INFO field
MANUAL_REVIEW_TYPE

Remove unique Wham deletions
We used the lrWGS validation tool VaPoR [27] to assess the evidence for srWGS SV calls in
matched lrWGS data. During prior analyses such as in the 1000 Genomes Project [37], we
discovered very high false-positive rates for deletions that were uniquely contributed by the
Wham algorithm [24], one of the SV calling algorithms used by GATK-SV. As expected, we
again observed here that 97% of non-reference genotypes in deletion sites uniquely discovered
by Wham (13,557,361 out of 13,915,316) were not supported by VaPoR genotypes from lrWGS
and 95% of unique deletions in this category (214,675 out of 225,547) had no non-reference
genotypes supported by VaPoR. We applied a hard filter for these variants (i.e. these variants
will not appear in the v7 srWGS SV callset).

Outlier Removal
We calculated the distribution of SV counts across all samples stratified by SV type and
observed a subset of samples (n = 9) that carried significantly more SVs in a single SV class
than the rest of the cohort. These samples were likely to have a higher false positive rate and
were removed from the v7 srWGS SV callset. We defined outlier samples as the subset that
have SV counts greater than (where is the third quartile and is the𝑄

3
+ 1. 5 ∗ 𝐼𝑄𝑅 𝑄

3
𝐼𝑄𝑅

interquartile range) for any SV type. Among the 9 outlier samples identified, 6 were outliers for
duplication counts and 3 were outliers for deletion counts.
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Genotype Filter (SL Filter)
We filtered genotypes of bi-allelic SVs using a machine learning model, described below, to
reduce the number of false positive INS, INV, DEL, and DUP while minimizing loss of sensitivity.

Method

Training data

We selected true positive and false positive training sites for the machine learning model based
on comparisons against long read data or genotyping arrays, depending on length and type of
the SV. Long read SV calls are ideal for confirming SV events with accurate breakpoint
resolution but are not sensitive to large CNVs (>5kb) that must be detected by read depth
signatures. Genotyping arrays provide a good source of orthogonal data to confirm large CNVs
(>10kb) but are too sparse to be sensitive to smaller CNVs and cannot be used to detect other
SV types. Therefore, we trained INS, INV, DEL <5kb, and DUP <5kb on lrWGS data and we
trained DEL >10kb and DUP >10kb on SNP arrays. There was a gap in the training data for
CNVs between 5kb and 10kb in size; these CNVs were grouped with large CNVs >10kb for
filtering because both size ranges rely on read depth evidence, so their genotyping error modes
are expected to be similar.

lrWGS training data

A subset of 606 samples with matched lrWGS data were selected for model training, and an
additional 67 were held out as a test set to validate the model (the remaining 316 samples with
matched long read data had not completed long read sequencing and QC at the time). For each
sample, non-reference genotypes for eligible variants (SV type DEL, DUP, INS, or INV,
restricting to below 5 kb in length for CNVs) were assessed against lrWGS using VaPoR and
overlap with SV calls from lrWGS data from the tools PAV [28], PBSV [29], and sniffles [30]. The
GATK tool SVCluster was used to compute overlap between SV calls from srWGS and lrWGS
[10].

Variants were labeled as positive training examples if:
● The variant had at least two reads supporting the alternate allele according to VaPoR.

We counted a read as supporting the alternate allele if the VaPoR_Rec score
(confidence score for each long read; positive values indicate support for the alternate
structure described by the SV call) was greater than zero AND

● The variant had at least one long read SV call with at least 10% reciprocal overlap (ratio
of total overlap to the size of the larger call) and 50% size similarity (ratio of the smaller
to larger call size).

Variants were labeled as negative training examples if:
● The variant had at least 5 reads that VaPoR was able to evaluate in the sample and no

reads had a positive VaPoR_Rec score AND
● The variant was not within 5 kb of a breakpoint of a lrWGS SV call with a matching SV

type.
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Variants that did not meet either the positive or negative criteria were dropped from the training
set (Figure 9A).

Genotyping array training data

Using array data, we evaluated deletions and duplications of at least 10 kb on the autosomes
with the Genome STRiP IntensityRankSumAnnotator (IRS) [31,32]. The IRS tool compares the
array probe intensity values between samples predicted to carry the CNV and those predicted to
be non-carriers (according to genotypes in the SV VCF), using all probes that are within the
CNV interval. Using a non-parametric test, the IRS tool assigns a p-value to each CNV which
indicates if the CNV genotypes are supported by the intensity data.

We ran the IRS test on batches of 500 samples. Prior to running the IRS test for each batch, we
dropped any probes for which samples in the batch had missing data at that probe. We
examined the IRS test results for all CNVs of at least 10 kb for which there were at least 5
overlapping probes tested in the batch. Sites with an IRS p-value (IRS_PVALUE) less than 1e-6
were chosen as positive training sites for the carrier samples (as determined by the genotypes
in the SV VCF). Sites with an IRS p-value greater than 0.2 were chosen as negative training
sites for the carrier samples.

Filtering model

We employed a method for re-calculating SV genotype quality to reduce false positive variants.
This filter tool (XGBoostMinGqVariantFilter) is implemented in GATK [33]. The filter applies a
decision tree from the XGBoost library for gradient boosted machine learning to predict the
quality of a given genotype [34].

The model was trained to assess the probability that a genotype is true given a set of features
that include:

● SV class
● SV size
● allele frequency
● existing genotype quality scores
● read evidence support
● source callers
● concordance with raw calls
● overlap with segmental duplication, simple repeat, mappability, and RepeatMasker track

intervals

The filtering model was trained on labeled non-reference genotypes described in the Training
data section. The filtering tool annotates each genotype with a scaled logit (SL) score, for which
lower (more negative) scores reflect a low probability of being non-reference, higher scores
(more positive) a higher probability, and a score of 0 being equally likely. Genotype quality (GQ)
scores were also updated according to SL using the formula:

.𝐺𝑄 =− 10𝑙𝑜𝑔
10

1

(0.52/0.48)𝑆𝐿+1
⎡⎢⎣

⎤⎥⎦
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Precision and recall were then calculated across a range of SL cutoffs using the following
equations:

,𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛

𝑇𝑅𝑈𝐸
𝑃𝐴𝑆𝑆

𝑛
𝑇𝑅𝑈𝐸
𝑃𝐴𝑆𝑆 +𝑛

𝐹𝐴𝐿𝑆𝐸
𝑃𝐴𝑆𝑆

,𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑛

𝑇𝑅𝑈𝐸
𝑃𝐴𝑆𝑆

𝑛
𝑇𝑅𝑈𝐸
𝑃𝐴𝑆𝑆 +𝑛

𝑇𝑅𝑈𝐸
𝐹𝐴𝐼𝐿

Where is the number of non-reference srWGS genotypes with truth label X and filter status Y.𝑛
𝑋
𝑌

Note that a recall of 1 corresponds to retaining all srWGS SV calls with lrWGS support and
therefore does not account for false negatives in the initial srWGS SV callset.

The minimum SL scores required for each genotype to pass the model were selected with the
goal to maximize F1 scores. Failed genotypes were revised to no-call (./.). Homozygous
reference genotypes were also filtered by inverting the SL score and applying the same cutoffs.

Results
Analysis of the training samples from lrWGS and genotyping arrays yielded a total of 664,997
trainable genotypes, while labels for 1,006,729 genotypes (60% of the total) could not be
determined (Figure 9 A). SL scores from the trained model largely recapitulated truth labels, with
false positives (FP) and true positives (TP) generally having lower and higher scores,
respectively (Figure 9 B). The model also predicted that the majority of unlabeled variants were
of poor quality, likely reflecting the low signal-to-noise ratio of many SVs called from srWGS.

Figure 9 -- Training data for genotype filtering. (A) The proportion of each training label out of all
SV genotypes in the training data, and (B) the SL score distribution produced by the trained
model.

The genotype filtering performance was evaluated in the test set of 67 held-out samples with
matched lrWGS data. Figure 10 shows that precision decreases consistently as a function of
recall when thresholding on SL. This demonstrates that the method is effective for tuning callset
accuracy. These results also indicate comparable performance across the spectrum of SV
classes, with the exception of lower performance for medium (0.5-10 kb) duplications. Optimal
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cutoffs for SL filtering were determined using the training set as described above and are shown
in Appendix Table N.1.

Figure 10 -- SL genotype filtering performance assessed against 67 lrWGS labeled test
samples. (A) Precision-recall curves for all filtering classes, (B) recall as a function of the SL
cutoff value, and (C) precision as a function of the SL cutoff value.

We report the performance of the SL genotype filter combined with the No-call rate filtering (see
below) in Appendix N.

No-call rate (NCR) Filtering
To further refine the SV sites, we also filtered on the no-call rate (NCR), which is defined as the
proportion of no-call genotypes (./.) among all genotypes. The NCR for each site is annotated in
the INFO field, with the exception of sites with SV types CPX, CTX, and MCNV, which were not
included in this filtering process. A filter status of “HIGH_NCR” was applied to every variant
exceeding an NCR cutoff of 7%. This cutoff of 7% was chosen so as to remove noisy sites while
preserving as many non-reference genotypes as possible across samples (Figure 11). To
calculate the inflection point for proportion of non-reference genotypes retained vs. NCR cutoff
value, we minimized the following quantity:

,β2𝑟2 + (1 − 𝑣)2

where r is the NCR, v is the proportion of retained variants, and 𝛽=1.5 is a weighting parameter.
With the chosen cutoff of r=0.07, v=85% of non-reference genotypes across were retained.
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Figure 11 -- Proportion of retained variants against the NCR filter cutoff in the training set. Red
lines indicate the chosen NCR cutoff point, where 85% of non-reference genotypes are retained.

We report the performance of the NCR filtering combined with the SL genotype filter (see
above) in Appendix N.

Batch Effect Correction
To correct for batch effects among the 24 batches used for the batched steps of the GATK-SV
pipeline, each variant was evaluated for batch effects. The filter
“VARIABLE_ACROSS_BATCHES” was applied to variants with statistically significant batch
effects. Details of the statistical methods for batch effect correction can be found in the
“Assessment of batch effects” paragraph in the supplementary methods of Collins et al 2020
[21]. Please note that PCR-amplified samples are not part of the AoU cohort, so we applied only
the pairwise and one-vs-all comparisons described in Collins et al.

Multiallelic CNVs
Read depth signal is less reliable in events smaller than 5 kb [35]. We removed 1,051 MCNVs
under 5 kb in length from the callset, so they will not appear in the VCF file. We report MCNVs
of greater than 5 kb with the “MULTIALLELIC” filter tag. Therefore, all MCNVs in the final callset
will have a length greater than 5 kb and be tagged as “MULTIALLELIC”.

Mobile element deletions
GATK-SV requires read depth support for biallelic CNVs greater than 5 kb in size; candidate
large CNVs that lack read depth support are retained in the callset but the SV type is revised to
breakend (BND) and the filter “UNRESOLVED” is applied. However, deletions of large mobile
elements, such as LINE1 and HERVK, are not expected to show significant decreases in
sequencing depth due to the presence of reads from other mobile elements across the genome.
To rescue these deletions, records of SV type BND that overlap annotated mobile elements by
greater than 50% and have SVLEN > 5kb, STRANDS = +-, and PE evidence were changed
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back to SV type DEL. In addition to being annotated as DEL in the SVTYPE field in INFO, the
mobile element class was annotated in the ALT field, i.e. DEL:ME:LINE1. This method added
back 883 LINE1 deletions and 74 HERVK deletions in the srWGS SV callset.

Complex SVs and complex inter-chromosomal translocations
Specific alignment patterns and discordant paired end reads (PE) are expected for complex
(CPX) and translocation (CTX) SVs [21]. For example, CPX events involving inversions are
expected to have clusters of +/+ and -/- stranded alignments, while those that involve
duplications are expected to have -/+ stranded clusters. In addition, read depth (RD) changes
are expected if large copy number variants (>5kb) are involved. For CTX, discordant read pairs
that link the involved chromosomes are expected.

To improve the precision of the CPX and CTX calls from GATK-SV, the PE and RD evidence
was assessed and compared against these expectations. For each CPX and CTX
non-reference genotype, the PE evidence within a window of 100-1000 bp around the
breakpoints was extracted and compared to the expectation for each sample genotyped as
non-reference. We validated the CPX events involving large CNVs for each sample by
comparing the non-reference genotypes with the CNV calls generated by raw depth algorithms
(i.e. cnMOPS and GATK-gCNV).

Over half of the non-reference CPX genotypes (53.1%) had the expected PE evidence across
all breakpoints, 24.8% had PE support only for some breakpoints, and 22.1% lacked PE support
for all breakpoints. 50.7% of samples with non-reference genotypes for CPX events that involve
large CNVs had overlapping CNVs in the raw depth callers. When requiring both PE evidence
for all breakpoints and RD evidence when applicable, 48.2% of CPX genotypes failed this
assessment and the genotypes were revised to no-call (./.).

Out of 26 CTX events, 8 failed our filters: 3 were carried at an allele frequency >1% and 5
lacked sufficient PE evidence for all non-reference genotypes. Failed genotypes were revised to
no-call (./.) and failed sites were flagged with the filter status "UNRESOLVED".

Manual Curation of Large CNVs
We performed a visual inspection of read depth across all 225 CNVs (deletions and
duplications) larger than 1 Mb observed in our final VCF using a visualization tool found in
GATK-SV [36]. After inspection, we confirmed the presence of 219 CNVs (97.3%). We
determined that the six CNVs (2.7%) that were not confirmed were all caused by a bug in the
GATK-SV genotyping module, which has now been corrected and will not affect any version of
GATK-SV from v0.27-beta. We also found that 12 (5.3%) of the CNVs larger than 1MB
appeared to have multiple copy states, so we applied the multiallelic filter tag (MULTIALLELIC).
Finally, for 35 CNVs (15.6%) that had at least one sample with inaccurate breakpoints, we
manually reassigned breakpoints using the more precise sample level depth calls derived from
preceding modules in the pipeline. All revisions resulting from manual review are described in
the INFO field MANUAL_REVIEW_TYPE.
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Structural Variant QC Results
Below we detail several metrics of interest for this SV callset. We include measures from both
the total callset (all variants in the callset, regardless of filter tag) as well as a high-quality callset
composed of only variants with a filter tag of PASS or MULTIALLELIC. Figure 12 shows the SV
counts, stratified by SV type, within the callset. Figure 13 shows the distribution of SV counts
per genome, stratified by SV type, in the full cohort and for different predicted ancestries. Figure
14 shows the distribution of SV lengths for each SV type; the fraction of SVs decreases with
increasing SV size, except for MCNVs, which are always over 5 kb, and INS, which have peaks
representing ALU, SVA, and LINE-1 elements. Figure 15 shows the ratios of homozygous
reference, heterozygous, and homozygous alternate genotypes at each SV site and the fraction
of SV sites that are in Hardy-Weinberg equilibrium.

Additional QC analyses are described in a supplementary document, “Benchmarking and quality
analyses on the All of Us v7 short read structural variant calls,” available in the User Support
Hub [1].

Figure 12 –We observed 515,427 total SVs of which we determined 415,387 to be of high
quality. These counts are consistent with previous studies of similar sample size including
gnomAD V2 [21].
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Figure 13 –We observed approximately 9k high quality SVs per person, which is consistent
with SVs recently generated on the 1000 Genomes Project samples [37]. As expected, samples
with predicted African ancestry had the highest SV counts while those with European ancestry
had the lowest. Non-African and non-European samples were grouped together for this figure
due to lower sample counts. (AFR=predicted African ancestry, EUR=predicted European
ancestry, OTH=predicted Non-African and non-European ancestry)
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Figure 14 – SV size distribution matches previous expectations with notable insertion peaks
corresponding to ALU, SVA, and LINE-1 insertions.

Figure 15 – Among high quality variants, only 7.5% fail Hardy Weinberg Equilibrium (HWE).
Most of these failures appear to be driven by a bias towards genotyping variants as
heterozygous. For the high quality calculation we included only the 11,306 unrelated samples.
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Long Reads
There are 1,027 long read sequencing (lrWGS) samples in the v7 genomic data release. We
applied a consistent sequencing protocol and performed QC checks for all samples. We also did
quality checks on the joint SNP and Indel callset using information across samples. SNP and
Indel variants and SVs are available for long read sequences in VCF format. In addition, long
read sequences aligned to the grch38_noalt and T2Tv2.0 references are available in BAM
format [38]. De novo assemblies are available in both FASTA format and graphical fragment
assemblies (GFA) format. The data is described in the ‘How the All of Us Genomic data are
organized’ article on the User Support Hub [1].

Data generation for lrWGS
Only one sequencing center generated the long read whole genome sequencing (lrWGS) data
with a single technology, so we did not perform any cross-sequencing center consistency
checks.

Samples were selected for lrWGS sequencing if they had srWGS and Array data in this v7
release, are self-reported African American participants, and are unrelated. Please see
Appendix B for the self-reported ancestry report for participants with long reads data.

HudsonAlpha was the single sequencing facility (“sequencing center”) commissioned for
performing long reads sequencing for this cohort. The sequencing center used the Single
Molecule Real Time (SMRT) sequencing technology [39] from Pacific Biosciences (PacBio). A
SMRT cell is a chip conceptually similar to a flowcell in short read sequencing. Each SMRT cell
is made of millions of zero-mode waveguides, where the modules are trapped and sequenced.
Each molecule is scanned multiple times. The scanned data goes through
consensus-processing (Circular Consensus Sequencing or CCS), which combines multiple
lower-accuracy readings of a single molecule to produce a high accuracy consensus sequence.
The sequencing instrument outputs the CCS-processed reads for each SMRT cell as an
unaligned BAM (uBAM). Please refer to the PacBio glossary [40] for a more thorough definition
of terms.

The uBAM files containing data for one SMRT cell are then delivered to the DRC along with
metadata (e.g. which samples are sequenced with this SMRT cell, barcodes used if applicable,
etc). The DRC extracts the CCS reads with a quality score greater than Q20 (HiFi reads) from
the uBAM.

Single Sample QC for lrWGS
Samples can be sequenced across multiple SMRT cells, which are then demultiplexed and
aggregated into BAMfiles for each sample. For each sample, we run QC on each individual
demultiplexed SMRT cell and the aggregated sample bam file (Table 12). Three of the QC
processes are performed on both the demultiplexed SMRT cell data and the aggregated sample
data. As expected, no aggregated samples failed these three QC checks.
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The HiFi reads of the demultiplexed SMRT cells are aligned to two references: “grch38_noalt”
and “T2Tv2.0”. grch38_noalt corresponds to the GRCh38 reference with no alternate
sequences [41,42]. T2Tv2.0 corresponds to the T2T-CHM13v2.0 reference, with the EBV contig
added from the grch28_noalt reference [43]. We check the grch38_noalt BAM files before
downstream processing, described in Table 12. In total, the DRC performed QC on 2,597
demultiplexed SMRT cell samples for a total of 1,027 aggregated samples.

Running three QC steps at both the demultiplexed SMRT cell level and aggregated sample level
allows us to identify errors early in the process and to find quality issues at both levels. Please
note that we do not use cross-sample information in the Single Sample QC process. Appendix
O provides an overview of the processing steps for the lrWGS data, including processes after
QC, such as variant calling and assemblies.

Table 12 -- QC processes performed on single sample data in each SMRT cell and after
aggregation
QC Process Aggregated sample

or demultiplexed
SMRT cell?

Passing criteria Error modes
addressed

V7 release results

Fingerprint
concordance

Both Log-likelihood ratio
> 6

- Sample swaps
- Large amounts of
cross-individual
contamination

All lrWGS samples
are concordant with
array samples.

Sex concordance Both Sex call is
concordant with
self-reported sex at
birth.
OR
Self-reported sex at
birth reported as
“Other” or was not
reported

- Sample swaps All lrWGS samples
are concordant.

*Other refers to a
participant
self-reporting
“Intersex”, “I prefer
not to answer”, or
“none of these fully
describe me”

Cross-individual
contamination

Both < 0.03 (<3%) - Sample
contamination from
another individual

All lrWGS samples
meet the threshold
(Aggregated
samples plotted in
Figure 17).

Coverage Aggregated sample ≥ 5x mean coverage - Sample
preparation errors
- Poor sensitivity
and precision of
variant calling

All lrWGS samples
passed this check.

Read length median Aggregated sample ≥ 10,000 bp - Shorter fragments
significantly
impacting variant
calling performance

All lrWGS samples
passed this check.

Outlier sample Aggregated sample Manual threshold -Poor variant calling Five total samples
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filtering performance were outliers due to
variant counts and
are not included in
the v7 lrWGS data
release
(See Figure 20).

Fingerprint Concordance

Method
Each grch38_noalt BAM is checked against a fingerprint VCF to verify their marked identity from
the sequencing metadata. This is applied to both the SMRT cell demultiplexed reads for the
sample and the aggregated sample reads. We use the same fingerprint VCFs that are used by
the srWGS fingerprint verification pipeline. Please refer to the Fingerprint Concordance method
of the srWGS SNP & Indel QC process, as we follow the same method for lrWGS data, with
some engineering adaptations that do not change the algorithm. The HAPLOTYPE_MAP file for
lrWGS fingerprint concordance can be found at
“gs://gcp-public-data--broad-references/hg38_noalt/v0/aou/fp/lr.aou.fp.haplotype_database.no_
alt.txt”, which differs from the srWGS HAPLOTYPE_MAP file only in the header section.

If a BAM failed fingerprint concordance, we launched a pipeline to find its identity by
exhaustively testing to find a match against the other lrWGS fingerprint VCFs, whether planned
or already sequenced. The true identity is the identity of the fingerprint VCF that returns the
highest LOD that is above 6.0. We did not encounter any cases where a BAM file matched more
than one other sample. If no matching VCF was found, then the lrWGS data was not released.
The DRC also returns findings about swaps and their computationally-resolved identities back to
the sequencing center for cross verification.

Results
All lrWGS samples (including all corresponding demultiplexed SMRT cells) in the v7 release
passed the fingerprint concordance check based on the corresponding array VCF (Figure 16).
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Figure 16 -- Fingerprint LOD histogram of the v7 lrWGS samples. All lrWGS v7 samples
exceeded the fingerprint LOD threshold of 6.0.

Sex Concordance

Method
A simple sex concordance check is also performed on the grch38_noalt version of each BAM.
The tool mosdepth (v0.3.3) [44] is run to calculate coverage across the whole genome and
over each chromosome. A formula is then used for inferring the sex ploidy of the sample

Ploidy_x = round( 2 * cov(chrX) / cov(chr1) )
Ploidy_y = round( 2 * cov(chrY) / cov(chr1) )

The self-reported sex assigned at birth from the CDR data for each sample is then checked for
contradictions with the inferred sex chromosome ploidies. If we do not have a “male” or “female”
for the sex assigned at birth for the sample from the CDR data, because the participant reported
it as “Intersex”, “I prefer not to answer”, “none of these fully describe me”, or skipped the
question, we passed the sex concordance check, regardless of the information from the inferred
sex ploidy. The sex assigned at birth data from the CDR is described in Appendix F.

Results

We do not include any lrWGS samples that fail the sex concordance check in the v7 release
samples, but one sample was included after a manual inspection. This sample, whose
self-reported sex assigned at birth was male, received normalized X and Y coverage of 0.97
and 0.22. This happened in two separate SMRT cells for the sample. As a comparison, the
mean normalized chrY coverage of female samples who passed the lrWGS sex concordance
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check (samples whose self-reported sex at birth is female and the lrWGS calculated sex is
female) is 0.05 with a 0.01 standard deviation. With rounding, the sample’s chromosome X and
Y ploidy was reported as 1 and 0, respectively; but because of the normalized 0.22 coverage on
the Y chromosome, we manually marked the sample as passing and included it in the release.

Cross-individual Contamination Rate

Method
VerifyBamID2 (version 2.0.1) was adapted into a pipeline for estimating cross-individual
contamination for lrWGS data. VerifyBamID2 was originally designed for short read sequencing.
To make the process scalable, we converted the grch38_noalt BAM to a pileup format at
selected sites, where VerifyBamID2 genotypes the input, in parallel per-chromosome.

We also evaluated the accuracy of VerifyBamID2 around the 3% contamination cutoff for lrWGS
data to determine if the tool would erroneously pass or fail samples. We did this through an in
silico mixture of samples, simulating different contamination scenarios and at different levels:

● Cross contamination from a sample from a different population and of opposite sex.
● Cross contamination from a sample from a different population and of the same sex.
● Cross contamination from a sample from the same population of different sex.
● Cross contamination from within a family, i.e. parent-child contamination.

We did not have publicly accessible long reads data for assessing the case where the
contaminant is from the same population and the same sex. Given that the sites used by
VerifyBamID2 for estimation are all autosomal sites, we don’t believe this case will have any
effect. All in silico mixed BAMs have coverage ~8X to emulate the production coverage.

We tested six levels of contamination (3%, 9%, 17%, 33%, and 50%). At 3%, 9%, and 17%, the
error between VerifyBamID2 and our in silico mixture was never over 10% of the testing
contamination level (eg, error was < 0.3% when testing an in silico mixture of 3%). At higher
tested contamination levels (33% and 50%), the error stayed within 20%. Note that if
contamination were to be this high, fingerprint verification would have failed the sample.

We observed from this experiment that for unrelated samples, VerifyBamID2’s estimations are in
line with the expected contamination level. For related samples, VerifyBamID2 tends to
significantly underestimate the contamination level. This does not affect the v7 lrWGS release
because all samples are unrelated.

Results
We did not include any lrWGS samples with a cross-individual contamination rate higher than
2.5% (Figure 17). This is below the error (2.7%) we observed in the in silico testing of
VarifyBamID2 at 3% contamination, which indicates that all released samples have a
cross-contamination rate below 3%.
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Figure 17 -- Estimated cross-individual contamination for the lrWGS samples, calculated by
VerifyBamID2. All samples met the 3% threshold, even when accounting for possible errors in
VerifyBamID2.

Coverage

Method

Coverage is defined as the number of reads covering the bases of the genome. Maintaining
coverage is important for consistent statistical power and accurate variant calling. We applied a
coverage threshold of ≥ 5x mean coverage for the lrWGS samples in order to remove any
samples that did not have enough coverage for statistical power and accurate variant calling.

Results

We did not release any samples that did not meet the mean coverage threshold. The frequency
of mean coverage can be seen in Figure 18.
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Figure 18 -- Coverage histogram of the lrWGS samples in the v7 release. Note that a mean
coverage of 5x was the minimum to be included in the release.

Read Length Median

Method

We calculated the read length median to determine if any samples had shorter fragments that
would significantly impact the variant calling performance. The threshold read length median
was ≥ 10,000 base pairs and all lrWGS samples passed this check.

Results

We did not release any samples that did not meet the read length median threshold. A
distribution of the read length median can be seen in Figure 19.
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Figure 19 -- Read length median histogram of the lrWGS samples in the v7 release. Note that
a read length median of 10,000 base pairs was the minimum to be included in the release.

Outlier Sample Filtering

Method
Variant calling was performed on single sample BAM files for long reads data. SNP and Indel
single sample callsets were generated using the PEPPER-Margin-DeepVariant pipeline [45]
(version 0.4.1 for PEPPER and version 1.3.0 for DeepVariant). We filtered out events with a
QUAL score less than 40. We called SVs with Sniffles2 [46] and PBSV [29].

We used two independent criteria when detecting outlier samples using their single sample
VCFs: abnormal SV counts and SNP and Indel counts, given their coverage. We found outliers
by plotting the variant counts versus the coverage and manually evaluating the distribution
across the entire cohort, seen in Figure 20.

Results
We removed four samples from the v7 release due to their low SV counts and we removed one
sample from the release due to the combined SV and small variant count being an outlier. We
do not include these samples in the v7 lrWGS release.
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Figure 20 --We compared the variant count from long read samples to the sample coverage
and manually identified outliers. The Sniffles2 and PBSV plots are SV counts and the
DeepVariant plot represents SNP and Indel counts. Each dot represents one sample. Green
dots (1027) are included in the v7 Release. Cyan dots (4) are excluded because they appear to
be outliers when judged by their SV counts. Magenta dots (1) are excluded because they
appear to be outliers when judged by their SV and SNP and Indel counts. Red dots (3) are
excluded due to low coverage.

Joint Callset QC for the lrWGS SNP/Indel callsets
Joint callset QC is performed on the joint SNP and Indel callset from the long reads data (Table
13). The single sample VCFs were joined using GLNexus (version 1.4.1) [47], parallelized per
chromosome. Final joint-called SNP and Indel callsets were converted to Hail MatrixTable (Hail
MT) format for analysis. For the Hail MT joint callset QC relatedness and sample population
outlier analyses, we used high quality sites that can be called accurately (Appendix J). If a
sample was an outlier, we did not include it in the v7 release, as opposed to the srWGS joint
callset QC, which flagged but did not remove outlier samples.

Table 13 -- lrWGS joint callset QC steps

QC process Error modes addressed V7 release results

Relatedness - Sample swaps
- Related samples, which
confound analyses

No sample pairs had kinship scores > 0.1, indicating
that no samples were related.

Sample Population
Outlier

- Noisy samples All outlier samples were removed from the v7 release
and are not included in the lrWGS joint callset
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Relatedness

Method
We used the Hail pc_relate function to determine the kinship score of pairs, as we did with the
short reads data in Appendix K. We ran pc_relate on the Hail MT based on the lrWGS
SNP/Indel joint callset.

Results
We found that no lrWGS sample pairs had kinship scores > 0.1. This indicated that no lrWGS
samples were related to a 2nd degree or closer, as we expected.

Sample Population Outlier

Method
We used the high quality sites from the lrWGS SNP/Indel joint callset (Appendix J) to do a
population analysis and find population outliers. Following a similar method to the srWGS SNP
& Indel sample population outlier flag analysis, we regressed out sixteen principal component
features for the joint lrWGS genotype matrix in Hail.

Results
We manually inspected samples in PC1 and PC2 and discovered two outlier samples in the
callset, which were excluded from the release (Figure 21).
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Figure 21 -- Principal component analysis of the population structure of the lrWGS joint callset
in order to determine outlier samples. The two outliers were identified manually and removed
from the v7 lrWGS release.
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Known Issues
The issues below apply to the v7 release genomic data (arrays, srWGS, srWGS SVs, long
reads, and auxiliary data). We have provided suggested actions for researchers to workaround
the issues and provided remediation plans when necessary. Sample lists relevant to these
issues can be found in the User Support Hub [1].

Known Issue #1: Small subset of samples missing corresponding
CDR data
Update as of April 18, 2024. The 20 array samples have been removed from the array Hail MT
and PLINK files, released as version 7.1 on April 18, 2024.

Six srWGS samples and 20 Array samples in this release are missing their corresponding CDR
data. The affected participants are consented to appear in the genomic data.

Affects:
● srWGS SNP & Indel samples: VDS, VCF, PLINK, and Hail MT formats
● Array samples: VCFs, PLINK, and Hail MT

Suggested action:
● If you are not using CDR data (e.g., surveys, EHR), then no action.
● Otherwise, remove samples without corresponding CDR data. We will provide the lists of

srWGS and array samples without corresponding data in the CDR.
Remediation:

● We will provide two lists (srWGS and array) of the affected samples through the CDR.

Known Issue #2: 11 samples were affected by a sample swap
incident
Update as of April 18, 2024. The 11 array samples have been removed from the array Hail MT
and PLINK files, released as version 7.1 on April 18, 2024.

We identified a sample swap incident from the GCs which affects 11 samples with genomic
data, one srWGS sample and 11 array samples in the v7 release. This was due to an internal
issue that we have now remediated.

Affects:
● srWGS SNP & Indel samples: VDS, VCF, PLINK, and Hail MT formats
● Array samples: VCFs, PLINK, and Hail MT

Suggested action:
● Remove samples that are affected by the sample swap from your analysis. We provide

two list files containing the research IDs of the affected samples, one file for srWGS and
one file for array.

Remediation:
● We have fixed these sample swaps for future releases.
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Known issue #3: Array samples (N=416) from previous release
are missing in this release
A total of 416 array samples from the previous release are not included in the newest v7
release. This happened for multiple reasons:

1. For this release (v7 C2022Q4R9), we have reprocessed the arrays (details of the new
approach are found in Appendix E). As a result, some array samples passed QC in the
previous release, but did not pass QC checks in this release.

2. The participant withdrew consent between releases.
3. The sample was not reprocessed in time for this release. These samples will appear in a

future release.
At this time, we cannot provide a breakdown of the counts for each of the above reasons.

Affects:
● Array samples: VCFs, PLINK, and Hail MT.

Suggested action:
● If you are not using any array data from the previous release (C2022Q2R2), then no

action is necessary.
● If your cohort includes one of the samples that is missing you should upgrade your

cohort to include only samples in the v7 set.
Remediation:

● We have released a list of missing array samples on the User Support Hub [1].
● We will continue to re-process the array samples (ETA 2023). All new array samples will

use the new process as described in Appendix E.

Known Issue #4: Single array sample missing from Array Hail MT
and PLINK files
Update as of April 18, 2024. The sample has been included in the array Hail MT and PLINK
files, released as version 7.1 on April 18, 2024.

For sample 3518297, we only have a corresponding array in VCF. This sample was not included
in the array Hail MT and PLINK files. This was due to an internal issue in synchronization
between our srWGS and array sample lists.

Affects:
● Array Hail MT and PLINK files

Suggested action:
● No action. For array analyses, we recommend that you proceed with this one sample

missing. We believe that the effort to add one sample (0.0003%) to the MT or PLINK
files is not worth the expense.

Remediation:
● This will be fixed in the next release.
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Known Issue #5: Larger than expected changes in ancestry
predictions from previous release
We have found that the predicted ancestry for 7744 participants changed from the previous
release (7.9 % of the v6 C2022Q2R2 data release). Most of the changes were to and from the
“Other” classification (7519 participants, 7.6% of the v6 release). This was due to a change in
the SNP set used as the features in the PCA for prediction. We used chr20 and chr21 in v6 and
the autosomal exome in the current v7 release (see Appendix A). The ancestry changes may
affect your analysis if you migrate from the previous release to this release. In future releases,
we do not expect large ancestry changes (see Remediation below). The VAT uses these
computed ancestries to generate All of Us population (gvs_*_*) annotations. The genomic data
in the public Data Browser are also dependent on the ancestry predictions for populating
population information about variants.

Affects:
● Ancestry predictions, if you are migrating from v6 ancestry to v7.
● Variant Annotation Table (VAT)
● Public Data Browser

Suggested action:
● If you are not using ancestry predictions from the previous v6 release, then no action
● If you are migrating your analysis from the previous v6 release to the v7 release and you

used ancestry predictions, we recommend that you rerun downstream analyses that are
affected by computed ancestry.

Remediation:
● We are planning to continue to use the current (v7) SNP set as features for ancestry

prediction and thus, we do not expect large ancestry changes in future releases. In an
internal test, we used the new feature set with the previously released v6 data and
compared the ancestry predictions to the current v7 data with the new feature set. We
found that only 1890 samples (1.9%) changed ancestry assignment. Note that of these
samples, all samples switched to/from the “Other” classification.

Known issue #6: Ancestry prediction has higher error rates for
Middle Eastern ancestry
A paucity of labeled Middle Eastern samples reduced the performance of the random forest
classifier. This caused the confidence to dip when predicting ancestry for Middle Eastern
samples, which caused a larger proportion of these samples relative to other computed
ancestries, to be classified as Other (“oth”). The VAT uses these computed ancestries to
generate All of Us population (gvs_mid_* and gvs_oth_*) annotations. The genomic data in the
public Data Browser are also dependent on the ancestry predictions for populating population
information about variants.

See Table A.2 for details of the ancestry prediction performance

Affects:
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● Ancestry predictions
● Variant Annotation Table (VAT)
● Public Data Browser

Suggested Action:
● When limiting cohorts to samples with computed ancestry of Middle Eastern (“mid”), use

the ancestry predictions that do not include “other”. In other words, use the
“ancestry_pred” column, instead of “ancestry_pred_other”.

Remediation:
● We have completed investigating other approaches and have minimized this error in the

data. However, we do not have enough samples of middle eastern ancestry in our
training data to fully remediate this issue. We will be adding this information in the FAQ
section for all future releases.

Known Issue #7: VDS issue with GT
In the srWGS SNP & Indel VDS, we have precalculated the genotypes (GT) from the local
genotype field (LGT). If you filter any participants from the VDS, you will need to recalculate the
GT field. Examples of how to do this are found in example notebooks in the Researcher
Workbench.

Affects:
● srWGS SNP & Indel VDS

Suggested Action:
● If you are not using the VDS, no action.
● If you filter participants from the VDS, make sure to recalculate the GT fields.

Remediation:
● We have provided documentation in Researcher Workbench showing how to recalculate

GT fields from the VDS.
● In future releases, we will also provide a FAQ question and eliminate this Known Issue.

Known Issue #8: AS_VQSLOD is incorrect in the VDS and
dropped in callset data with all participants
There is inconsistency in the AS_VQSLOD annotation in the srWGS SNP & Indel VDS. This
annotation indicates information regarding the allele-specific filtering model and we generally do
not recommend that researchers use it for their analysis. Instead, we recommend using the
filters annotations. In the VDS, AS_VQSLOD is included but incorrect. In the reduced SNP &
Indel callset VCF, Hail MT, and PLINK files, AS_VQSLOD is dropped. AS_VQSLOD is correct in
the cohort builder.

Affects:
● srWGS SNP & Indel samples: VDS

Suggested action:
● Ignore (or drop) AS_VQSLOD from any analyses involving the VDS.
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● Update your analyses to not use this annotation
Remediation:

● We will provide the correct AS_VQSLOD in future releases.

Known Issue #9: Smaller callset ChrM VCFs are empty
We provide the srWGS SNP and Indel callset in VCF format over limited genomic regions,
sharded by chromosome. The chrM VCFs are empty and do not contain any data. We
cross-checked the complete callset VDS and verified that there are no calls on chrM.

Affects:
● srWGS SNP & Indel samples: VCF format

Suggested action:
● No action.
● If you are using the srWGS SNP & Indel smaller callsets in VCF format, do not include

the chrM.vcf.bz file in your analysis.
Remediation:

● We will not release these empty files in the next release.

Known issue #10: srWGS SNP & Indel VDS and VCFs from the
Cohort Browser will have extraneous INFO field (AS_YNG)
The srWGS joint callset includes AS_YNG (an INFO field) in the VDS, which should be ignored
by researchers. We have removed AS_YNG from all other genomic srWGS SNP & Indel VCFs
and Hail MTs, but it will appear when creating a VCF from the Cohort Browser

Affects:
● srWGS SNP & Indel VCF files created from the Cohort Browser
● srWGS SNP & Indel variants: VDS

Suggested Action:
● Do not include the AS_YNG field in any analyses when creating a VCF from the Cohort

Browser.
● Ignore (or drop) AS_YNG from any analyses involving the VDS.

Remediation:
● We will update the VDS to remove the AS_YNG field (ETA 2024)
● We will update the Cohort Browser data to remove the AS_YNG field (ETA 2023)

Known issue #11: srWGS SNP & Indel variant calls on
chromosome Y need additional filtering
We see variants with heterozygous calls in chromosome Y, which cannot be correct germline
calls. After manual review, we believe that regions of chromosome Y are prone to misalignment
artifacts (low mappability). This will cause heterozygous calls in chrY that are likely artifacts. We
have not investigated whether these are somatic mutations.
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Affects:
● srWGS SNP & Indel variants: VDS, VCF, Hail MT formats

Suggested Action:
● If you do not use variant calls on chrY, then no action.
● Otherwise, we recommend that you use AD, GQ, and GT to filter variants on

chromosome Y.
Remediation (ETA 2023):

● We will provide a set of regions (via a BED file) that researchers can use to mask
regions of the genome with poor calling accuracy for chromosome Y. It is not currently
available with the v7 release.

Known Issue #12: QUAL information has been removed for
srWGS SNP & Indel variants
The srWGS SNP & Indel variants are now released in VDS format (see the VDS article on the
User Support Hub [1]). In the VDS format, the actual QUALApprox annotation is not included.
This will affect other srWGS short variant files, such as the smaller callsets (eg, exome). The
filters used for srWGS SNP & Indel variants are the same and correct, but the annotation is not
included.

Affects:
● srWGS SNP & Indel variants: VDS, VCF, Hail MT, and PLINK formats

Suggested action:
● Use the filter field to determine the quality of variants
● If this annotation is important to your (current or future) analyses, please contact the

User Support Team [1]. We do not plan to remediate this unless we hear from
researchers.

Remediation:
● This will not be remediated, this known issue will move to a FAQ for all future releases.

Known Issue #13: srWGS callset using new convention for
genotype filtering flag
The srWGS SNP & Indel variants are now released in VDS format (see the VDS article on the
User Support Hub [1]). In order to reduce the genotype metadata stored and reduce the size of
the srWGS SNP & Indel variant dataset, the genotype filtering reason is no longer available.
Genotype filtering, which is in the VCF and the VDS as the FT annotation, is reported as PASS,
FAIL, or “.”. Treat “.” as PASS. In previous AoU releases, we reported more filtering information,
including annotations about VQSR filtering.

Affects:
● srWGS SNP & Indel variants: VDS, VCF, PLINK, and Hail MT formats

Suggested action:
● Update your analyses to check the genotype filter (FT) for “FAIL” instead of

“low_VQSLOD_INDEL” or “low_VQSLOD_SNP” to determine whether or not to use a
srWGS SNP & Indel variant in your analysis.
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Remediation:
● This will not be remediated, this known issue will move to a FAQ for all future releases.

Known Issue #14: Data processing issue affecting array data
Update as of April 18, 2024. We identified a sample swap incident that affects 63 samples with
array data in the v7 release.

Affects:
● Array samples: IDATs, VCFs, PLINK bed, and Hail MT

Suggested action:
● Update to the new 7.1 merged array Hail MT or PLINK bed files.
● Remove affected single samples IDAT or VCFs from analysis. We provided a list file

containing the research IDs of the affected samples.
Remediation:

● We generated a new array merged Hail MT and merged PLINK bed dataset, released
April 18, 2024.

Known Issue #15: Array and srWGS data with bone marrow
transplant history
Update as of April 18, 2024. The DRC has identified 1430 participants with a history of an
allogeneic bone marrow transplant or a bone marrow transplant of an unknown type. This
affects 1430 array samples and 12 srWGS samples.

Affects:
● Array samples: IDATs, VCFs, PLINK bed, and Hail MT formats
● srWGS samples: CRAMs, VDS, VCFs, PLINK bed, and Hail MT formats

Suggested action:
● Update to the new 7.1 merged array Hail MT or PLINK bed files.
● Remove affected samples from your analysis. We provide two list files containing the

research IDs of the affected samples, one file for srWGS and one file for array.
Remediation:

● We generated a new array merged Hail MT and merged PLINK bed dataset, released
April 18, 2024.
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FAQ
1. Why do you fail samples based on contamination rate for srWGS, but not for array

samples?
srWGS analyses (e.g., mosaicism) rely on other signals, such as read counts, which
are affected by contamination. Low rates of contamination do not affect array calls
and problematic levels of contamination will be reflected in the array call rate.

2. Did you remove samples from participants with bone marrow transplants?
Yes, we removed both array and srWGS samples associated with participants that
have received bone marrow transplants from allogeneic transplantation
(transplantation from another person), according to the corresponding electronic
health record (EHR) and survey responses provided by participants (Overall Health).
We did not remove samples who received bone marrow transplants from autologous
transplantation (transplantation from themselves).

3. Are all samples in the srWGS joint callset sourced from blood?
Yes. Although the program does have saliva srWGS samples, we did not include
these samples in the v7 release. Once we identify any batch effects between saliva
and blood samples (ETA 2023), we will reassess the inclusion of saliva samples in the
joint srWGS callset. If we decide that the batch effects will have minimal impact, we
will include saliva samples in the srWGS joint callsets in 2024.

Update as of April 18, 2024. The DRC has identified 1430 participants in the v7 data
release with a history of allogeneic transplantation (transplantation from another
person) or a bone marrow transplant of an unknown type. Please see Known Issue
#15 for more information.
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Appendix A: Ancestry
We computed categorical ancestry for all of the srWGS SNP & Indel samples in All of Us and
made these available to researchers. These predictions are also the basis for population allele
frequency calculations in the Variant Annotation Table (e.g. gvs_afr_ac) and data in the
Genomic Variants section of the public Data Browser. We used the high-quality set of sites (HQ
sites), described in Appendix J, to determine an ancestry label for each sample. The ancestry
categories are based on the same labels used in gnomAD [48], Human Genome Diversity
Project [49], and 1000 Genomes [18]:

● African (afr)
● Latino/Native American/Ad Mixed American (amr)
● East Asian (eas)
● Middle Eastern (mid)
● European (eur) -- Composed of Finnish (FIN) and Non-Finnish European (NFE)
● Other (oth) -- not belonging to one of the other ancestries or is an admixture.
● South Asian (sas)

We trained a random forest classifier [50,51] on a training set of the HGDP and 1kg samples
variants on the autosomal exome, obtained from gnomAD [52]. This exome was derived from
the exon regions of all autosomal, basic, protein-coding transcripts in GENCODE v42 [53]. We
generated the first 16 principal components (PCs) of the training sample genotypes (using the
hwe_normalized_pca in Hail [54]) at the high-quality variant sites (see Appendix J) for use as
the feature vector for each training sample. We used the truth labels from the sample metadata,
which can be found alongside the VCFs. Note that we do not train the classifier on the samples
labeled as “Other.” We use the label probabilities (“confidence”) of the classifier on the other
ancestries to determine ancestry of “Other”.

To determine the ancestry of All of Us samples, we project the All of Us samples into the PCA
space of the training data and apply the classifier (see Figure A.1). Since we do not have truth
labels, we can not determine the accuracy of our All of Us predictions. As a proxy for the
accuracy of our All of Us predictions, we look at the concordance between the survey results
and the predicted ancestry. The ancestry predictions can be found in Table A.1.
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Figure A.1 -- Ancestry predictions for the All of Us srWGS samples plotted on the first two
principal components (PC1 on x-axis and PC2 on the y-axis) of the genotype calls.

Table A.1 -- Breakdown of the computed ancestries in All Of Us srWGS data

Computed Ancestry (sorted by percentage) Count (percentage)

European 123072 (50.2%)

African 53944 (22.0%)

Latino/Admixed American 40838 (16.6%)

Other 19289 (7.9%)
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East Asian 5381 (2.2%)

South Asian 2342 (1.0%)

Middle Eastern 528 (0.2%)

Total: 245394 (100.0%)

We evaluated the performance of the ancestry predictions using two different test datasets:
1. A holdout set of training samples. We tested performance with and without the “Other”

ancestry
a. Error rate (incl Other): 0.050

i. See Table A.2
ii. Please see Known Issue #6, since the error rate is higher for Middle

Eastern (mid) ancestry. Our classifier conflates Middle Eastern and
Other.

b. Error rate (not incl Other): 0.002
i. See Table A.3

Table A.2 -- Error rate (incl. Other) on labeled training data using holdout set
Predicted

Actual AFR AMR EA
S

EUR MID OTH SAS

AFR 198 0 0 0 0 2 0

AMR 0 50 0 0 0 0 0

EAS 0 0 199 0 0 1 0

EUR 0 0 0 198 0 2 0

MID 0 0 0 0 49 1 0

OTH 0 2 2 3 25 7 8

SAS 0 0 0 0 0 2 198

Table A.3 -- Error rate (not incl. Other) on labeled training data using holdout set
Predicted

Actual AFR AMR EAS EUR MID SAS

AFR 199 1 0 0 0 0

AMR 0 50 0 0 0 0

EAS 0 0 199 0 0 1
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EUR 0 0 0 200 0 0

MID 0 0 0 0 50 0

SAS 0 0 0 0 0 200

2. We measured the concordance of the ancestry predictions against the self-reported race
and ethnicity of the All of Us samples. The concordance should be worse than the
holdout HGDP samples, but this is expected. Self-reported race and ethnicity does not
correspond to the populations listed above (race and ethnicities are social constructs
and the ancestry predictions are computed from the genotypes). We expect these to be
correlated, but not corresponding. This concordance evaluation is meant to discover
large errors in our ancestry predictions.

“Concordant” labeling between HGDP/1kg populations and All of Us
race/ethnicities:

1. African (AFR) → Black
2. Latino/Ad Mixed American (AMR) → Hispanic
3. East Asian (EAS) → Asian
4. Finnish (FIN) → White
5. Middle Eastern (MID) → MENA
6. Non-Finnish European (NFE) → White
7. Other (OTH) → Other (do not include skipped)
8. South Asian (SAS) → Asian

We do not include any samples where the self-reported race/ethnicity is “Skip”, “Prefer not to
answer”, or was not filled in. If a participant selected that their race/ethnicity was not a possible
selection (“NoneOfThese”), we counted them as “Other”.

Based on the procedure above, the concordance between self-reported race/ethnicity and the
ancestry predictions: 0.898.
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Appendix B: Self-reported race/ethnicity
As seen in Table B.1, the race/ethnicity breakdown of the genomic data is similar to all
participants All of Us CDR release C2022Q4R9. Samples with “Skip” responses include
participants that answered “prefer not to answer”, entered blank text, or did not respond to the
survey question.

Please see Known Issue #1, as six srWGS samples and 10 array samples are missing CDR
data. All other array, srWGS, and lrWGS samples have corresponding survey data (Appendix
C).

Table B.1 -- Self-reported Race/Ethnicity breakdown of the genomic data
Self-reported
Race/Ethnicity

Survey
response
counts (%)

Array counts
(%)

srWGS counts
(%)

srWGS SV
counts (%)

lrWGS counts
(%)

Asian 13838 (3.3%) 9605 (3.1%) 7422 (3%) 260 (2.3%) –

Asian, White 1894 (0.5%) 1284 (0.4%) 992 (0.4%) 32 (0.23%) –

Black 77069 (18.6%) 62514 (20.0%) 50064 (20.4%) 3938 (34.6%) 911 (88.7%)

Black, White 2390 (0.6%) 1743 (0.6%) 1351 (0.6%) 158 (0.14%) 54 (4.8%)

Hispanic 64672 (15.6%) 52904 (16.9%) 41938 (17.1%) 1586 (13.9%) –

Hispanic,
White 6512 (1.6%) 4718 (1.5%) 3682 (1.5%) 131 (0.12%) –

Other 15294 (3.7%) 11264 (3.6%) 8709 (3.5%) 457 (4%) 49 (4.8%)

Skip 91422 (2.2%) 6872 (2.2%) 5387 (2.2%) 237 (2.1%) 13 (1.3%)

White
222646
(53.8%) 162021 (51.8%) 125843 (51.3%) 4591 (40.3%) –

Total
413457

(100.0%)
312925

(100.0%)
245388

(100.0%) 11390 (100.0%) 1027 (100.0%)
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Appendix C: Data type availability with genomic data
Please see Known Issue #1, as six srWGS samples and 10 array samples are missing CDR
data. All other array, srWGS, and lrWGS samples have corresponding survey data. The srWGS
samples are a subset of the array data. The srWGS SV samples are a subset of the srWGS
SNP & Indel data (all srWGS samples with SNP and Indel data have SV data). The long reads
samples are a subset of the srWGS SNP & Indel and array data.

Additionally, array (Table C.1), srWGS SNP & Indel (Table C.2), srWGS SV (Table C.3), and
lrWGS (Table C.4) data have other corresponding non-genomic data. This can be one or more
of the following:

● Electronic Health Records (EHR)
● Physical Measurements (PM)
● Participant Provided Information (PPI/surveys)
● Fitbit (FB)

Descriptions of the non-genomic data can be found on the All of Us Data Sources page.

Table C.1 -- Array overlap with non-genomic data types

Data Combination Description
Participant
Count

Array any Array data 312925

Array and PPI any Array AND any PPI 312925

Array and PPI and PM any Array AND any PPI AND any PM 303064

Array and EHR any Array AND any EHR 255052

Array and PPI and EHR any Array AND any PPI AND any EHR 255052

Array and PPI and EHR and
PM any Array AND any EHR AND any PM AND any PPI 254203

Array and Fitbit any Array AND any Fitbit 11763

Array and PPI and Fitbit any Array AND any PPI AND Fitbit 11763

Array and PPI and PM and
Fitbit any Array AND any PPI AND any PM AND any Fitbit 10442

Array and Fitbit and PPI and
EHR any Array AND any Fitbit AND and PPI AND any EHR 8867

Array and PPI and EHR and
PM and Fitbit

any Array AND any EHR AND and PM AND any PPI AND
any Fitbit

8778

Table C.2 -- srWGS SNP & Indel overlap with non-genomic data types

Data Combination Description
Participant
Count

srWGS any srWGS data 245388
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srWGS and PPI any srWGS AND any PPI 245388

srWGS and PPI and PM any srWGS AND any PPI AND any PM 245149

srWGS and EHR any srWGS AND any EHR 206173

srWGS and PPI and EHR any srWGS AND any PPI AND any EHR 206173

srWGS and PPI and EHR and
PM any srWGS AND any EHR AND any PM AND any PPI 206109

srWGS and Fitbit any srWGS AND any Fitbit 8812

srWGS and PPI and Fitbit any srWGS AND any PPI AND Fitbit 8812

srWGS and PPI and PM and
Fitbit any srWGS AND any PPI AND any PM AND any Fitbit 8798

srWGS and Fitbit and PPI
and EHR any srWGS AND any Fitbit AND and PPI AND any EHR 7445

srWGS and PPI and EHR and
PM and Fitbit

any srWGS AND any EHR AND and PM AND any PPI AND
any Fitbit 7444

Table C.3 -- srWGS SV overlap with non-genomic data types

Data Combination Description
Participant
Count

srWGS SV any srWGS SV data 11390

srWGS SV and PPI any srWGS SV AND any PPI 11390

srWGS SV and PPI and PM any srWGS SV AND any PPI AND any PM 11385

srWGS SV and EHR any srWGS SV AND any EHR 9744

srWGS SV and PPI and EHR any srWGS SV AND any PPI AND any EHR 9744

srWGS SV and PPI and EHR
and PM any srWGS SV AND any EHR AND any PM AND any PPI 9743

srWGS SV and Fitbit any srWGS SV AND any Fitbit 425

srWGS SV and PPI and Fitbit any srWGS SV AND any PPI AND Fitbit 425

srWGS SV and PPI and PM
and Fitbit any srWGS SV AND any PPI AND any PM AND any Fitbit 425

srWGS SV and Fitbit and PPI
and EHR any srWGS SV AND any Fitbit AND and PPI AND any EHR 361

srWGS SV and PPI and EHR
and PM and Fitbit

any srWGS SV AND any EHR AND and PM AND any PPI
AND any Fitbit 361

Table C.4 -- lrWGS overlap with non-genomic data types

Data Combination Description
Participant
Count

lrWGS any lrWGS data 1027
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lrWGS and PPI any lrWGS AND any PPI 1027

lrWGS and PPI and PM any lrWGS AND any PPI AND any PM 1027

lrWGS and EHR any lrWGS AND any EHR 985

lrWGS and PPI and EHR any lrWGS AND any PPI AND any EHR 985

lrWGS and PPI and EHR and
PM any lrWGS AND any EHR AND any PM AND any PPI 985

lrWGS and Fitbit any lrWGS AND any Fitbit 38

lrWGS and PPI and Fitbit any lrWGS AND any PPI AND Fitbit 38

lrWGS and PPI and PM and
Fitbit any lrWGS AND any PPI AND any PM AND any Fitbit 38

lrWGS and Fitbit and PPI and
EHR any lrWGS AND any Fitbit AND and PPI AND any EHR 37

lrWGS and PPI and EHR and
PM and Fitbit

any lrWGS AND any EHR AND and PM AND any PPI AND
any Fitbit 37
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Appendix D: Genome Centers and Data and
Research Center
Below is the listing of the three Genome Centers (GCs), the Data and Research Center (DRC),
and the Biobank.

Role Principal Investigator(s)

Genome Center Richard Gibbs - Baylor College of Medicine, Johns Hopkins University
Eric A. Boerwinkle - Baylor College of Medicine, Johns Hopkins University
Kimberly F. Doheny - Baylor College of Medicine, Johns Hopkins University
Stacey Gabriel - Broad Institute
Gail Jarvik - Northwest Genomics Center at the University of Washington
Evan Eichler - Northwest Genomics Center at the University of Washington

Data and Research Center Paul Harris - Vanderbilt University Medical Center
Dan M. Roden - Vanderbilt University Medical Center
Melissa Basford - Vanderbilt University Medical Center
Anthony Philippakis - Broad Institute
David Glazer - Verily Life Sciences

Biobank Stephen Norman Thibodeau - Mayo Clinic
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Appendix E: Array processing overview
See Figure E.2 for an overview of the array genotyping process for the All of Us Research
Program. The three GCs used identical array products, scanners, resource files, and genotype
calling software. The GCs used the Illumina Global Diversity Array (GDA)
(https://www.illumina.com/products/by-type/microarray-kits/infinium-global-diversity.html).

For the v7 data release (C2022Q4R9), new cluster definition files (.egt) was created at Johns
Hopkins using raw data from 12,983 samples from all 3 genotyping centers (3,782-Broad,
4,342-Johns Hopkins, 4,859-UW) in order to reduce batch effects. Manual review and editing of
cluster boundaries was performed for 67,812 assays including all X, MT and Y SNPs, rare
variant calls with “new hets” detected by z-call (new hets > 2, total hets >=4, and MAF
<=0.0025) GEM trait SNPs, fingerprint sites for array concordance to WGS datasets and all
assays within the bed file regions for health-related return of results. 11,916 assays were
dropped based on manual review and 75,237 assays were dropped based on call rate <99%
and/or cluster separation <0.4. 681 trios were examined for mendelian segregation errors, 15
SNPs were dropped due to >1 mendelian error. A homogeneous subset of 7,511 samples was
defined using PCA and MCD (minimum covariance determinant method). Using this
homogeneous sample subset, HWE and sex differences in allele frequency were evaluated.
4,005 SNPs were dropped due to Hardy Weinberg equilibrium p-value less than 10-4 and 258
SNPs were dropped due to a sex difference in allele frequency of >0.2. \Batch effects were
evaluated by comparing allele frequencies between genotyping centers within the homogenous
sample subset. Chi-square statistics were Broad 0.73, Johns Hopkins 0.74, UW 0.74.

Figure E.1 Comparisons shown in Figure E.1 broken out into MAF bins.
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Figure E.2 Data for the program control sample HG001 was compared to evaluate the
performance of the new cluster file. When comparing data between the 3 genotyping centers,
missing data rates were decreased and concordance rates were increased.

Array product details:
● Bead pool file: GDA-8v1-0_D1.bpm
● EGT cluster file: GDA-8v1-1_A1_AoUupdated.08.17.21_ClusterFile.egt
● gentrain v.3
● reference hg19 (Note: We liftover to hg38 before publishing array data in the RW. The

IDAT files are raw files and thus have no reference.)
● gencall cut-off 0.15
● 1,814,226 assays

○ 1,767,452 SNVs
○ 36,839 indels
○ 9,934 IntensityOnly (probes intended only for Copy Number Variant (CNV)

calling)
Chemistry: Illumina Infinium LCG using automated protocol
Liquid handling robotics: Various platforms across the genome centers
Scanners: Illumina iSCANs with Automated Array Loader
Software:

● Illumina IAAP Version:
iaap-cli-linux-x64-1.1.0-sha.80d7e5b3d9c1fdfc2e99b472a90652fd3848bbc7.tar.gz

○ IAAP converts raw data (.idat files – 2 per sample) into a single .gtc file per
sample using the .bpm file (defines strand, probes sequences, and illumicode
address) and the .egt file (defines the relationship between intensities and
genotype calls)

● Picard-2.26.4
○ Picard tool, GTCtoVCF, converts the .gtc file into a vcf file.

● BAFRegress version 0.9.3 [4]
○ BAFRegress measures the within species DNA sample contamination using B

allele frequency data from Illumina genotyping arrays using a regression model

Quality Control:

Each genome center ran the GDA array under Clinical Laboratory Improvement Amendments
(CLIA) compliant protocols. We generated .gtc files and uploaded metrics to in-house
Laboratory Information Management Systems (LIMS) systems for quality control review. At
batch level (each set of 96 well plates run together in the laboratory at one time), each GC
included positive control samples, which were required to have > 98% call rate and >99%
concordance to existing data, in order to approve release of the batch of data. At the sample
level, the call rate and sex are the key quality control determinants [55]. Contamination is also
measured using BAFRegress [4] and reported out as metadata. Any sample with a call rate
below 98% is repeated one time in the laboratory. Genotyped sex is determined by plotting
normalized X versus normalized Y intensity values for a batch of samples [55]. Any sample
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discordant with ‘sex assigned at birth’ reported by an All of Us participant is flagged for further
detailed review. If multiple sex discordant samples are clustered on an array or on a 96 well
plate, the entire array or plate will have data production repeated. Samples identified with sex
chromosome aneuploidies are also reported back as metadata (XXX, XXY, XYY, etc). A final
processing status of “PASS,” “FAIL” or “ABANDON” is determined before release of data to the
DRC. An array sample will PASS if the call rate is > 98% and the genotyped sex and sex
assigned at birth are concordant. If we do not have a “male” or “female” for the sex assigned at
birth, because the participant reported it as “Intersex”, “I prefer not to answer”, “none of these
fully describe me”, or skipped the question, the array sample is marked as PASS. The sex
assigned at birth data from the CDR is described in Appendix F. An array sample will FAIL if the
genotyped sex and the sex assigned at birth are discordant or if the call rate is less than 98% on
the first run of the sample. An array sample will have the status ABANDON if the call rate is
less than 98% after at least 2 attempts at the GC.

Figure E.3 -- Overview of the array processing pipeline.
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Appendix F: Self-reported sex assigned at birth
See Table F.1 for the counts and percentages of participant responses to “What was your
biological sex assigned at birth?” in the Basics survey (based on All of Us CDR release
C2022Q4R9). The CDR code for this question is sex_at_birth. These participant responses are
used for the participant self-reported sex at birth information used in sex concordance checks.

Please see Known Issue #1, as six srWGS samples and 10 array samples are missing CDR
data. All other array, srWGS, and lrWGS samples have corresponding survey data (Appendix
C).

Table F.1 -- v7 release participants response breakdown to sex assigned at birth question

V7 release Array srWGS SNP & Indel srWGS SV lrWGS

Sex assigned at
birth responses counts percent counts percent counts percent counts percent

Female 185210 59.19 145563 59.32 6928 60.83 712 69.33

Male 121173 38.72 94756 38.61 4234 37.17 294 28.63

Other responses* 6542 2.09 5069 2.07 228 2.00 21 2.04

Total 312925 245388 11390 1027

Percentages may not add to 100 due to rounding.

*The *Other responses count includes any or no response for sex_at_birth. The available
options in the CDR are “I prefer not to answer”, “None of these fully describe me”, “Intersex”,
“No matching concept”, and “PMI: Skip”. “No matching concept” and “PMI: Skip” are separate
counts both referring to no response for sex_at_birth. These are separate because participants
in “No matching concept” did select a gender option for this survey question. The terms used
here are the Concept Names as they appear in the CDR.
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Appendix G: All of Us Hereditary Disease Risk
genes
The following gene symbols are in the All of Us Hereditary Disease Risk (AoUHDR) genes. We
have additional srWGS QC criteria in the regions covered by these genes, described in Table 2
of the main text. In the v7 callset, the AoUHDR genes are the same as the American College of
Medical Genetics and Genomics’ list of 59 genes where incidental findings should be reported
(ACMG59) [56]. The AoUHDR gene list may change in future releases.

ACTA2, ACTC1, APC, APOB, ATP7B, BMPR1A, BRCA1, BRCA2, CACNA1S, COL3A1, DSC2,
DSG2, DSP, FBN1, GLA, KCNH2, KCNQ1, LDLR, LMNA, MEN1, MLH1, MSH2, MSH6,
MUTYH, MYBPC3, MYH11, MYH7, MYL2, MYL3, NF2, OTC, PCSK9, PKP2, PMS2, PRKAG2,
PTEN, RB1, RET, RYR1, RYR2, SCN5A, SDHAF2, SDHB, SDHC, SDHD, SMAD3, SMAD4,
STK11, TGFBR1, TGFBR2, TMEM43, TNNI3, TNNT2, TP53, TPM1, TSC1, TSC2, VHL, and
WT1
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Appendix H: DRAGEN invocation parameters
Table H.1 summarizes the parameters used by the GCs to generate GVCFs, contamination
estimates, and sex ploidy calls from the DRAGEN for srWGS data.

Table H.1 DRAGEN 3.4.12 parameters run at all GCs
Parameter Parameter Value Description

-f n/a Overwrite if output exists

-r <hg38-ref-dir> The reference to use

--fastq-list <path-to>/fastq_list.csv
A list of fastq files to use as input for
this sample

--fastq-list-sample-id <sampleID>
The sample ID to use for naming this
sample

--output-directory <output-dir> The location of the final output files

--intermediate-results-dir <int-results-dir>
The location to write intermediate
outputs

--output-file-prefix
[CenterID]_[Biobankid_Sampleid]_[Lo
calID:optional]_[Rev#]

Standardized naming prefix for each
output file

--enable-variant-caller TRUE Turn on variant call outputs

--enable-duplicate-marking TRUE
Mark duplicate reads during
alignment

--enable-map-align TRUE
Produce an alignment from unaligned
read input

--enable-map-align-output TRUE Store the output of the alignment

--output-format CRAM Store the alignment as a CRAM file

--vc-hard-filter
DRAGENHardQUAL:all:QUAL<5.0;Lo
wDepth:all:DP<=1'

This parameter setting changes the
threshold on the quality to 5.

--vc-frd-max-effective-depth 40

Setting this parameter puts a limit on
the penalty value that is applied for
variant calls that deviate from the
expected 50% allele fraction for
heterozygous variants.

--qc-cross-cont-vcf <path-to/SNP_NCBI_GRCh38.vcf>
Marker sites to use for contamination
estimation

--qc-coverage-region-1 <path-to/wgs_coverage_regions.bed>
Regions to use for coverage analysis
(whole genome)

--qc-coverage-reports-1 cov_report
The type of reports requested for qc-
coverage-region-1

--qc-coverage-region-2 <path-to/HDRR_regions.bed>
Regions to use for coverage analysis
(HDR reportable regions)

--qc-coverage-reports-2 cov_report
The type of reports requested for qc-
coverage-region-2

--qc-coverage-region-3 <path-to/PGx_regions.bed> Regions to use for coverage analysis
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(PGx reportable regions)

--qc-coverage-reports-3 cov_report
The type of reports requested for qc-
coverage-region-3
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Appendix I: Samples used in the Sensitivity and
Precision Evaluation
In order to calculate the sensitivity and precision of the srWGS SNP and Indel joint callset, we
included four well-characterized samples in the v7 callset (Table I.1). We sequenced the NIST
reference materials (DNA samples) from Genome in a Bottle (GiaB) and performed variant
calling as described in the main text. We used the corresponding published set of variant calls
for each sample as the ground truth in our sensitivity and precision calculations [20].

Please note that the control samples do not appear in the data released to researchers.

Table I.1 -- Samples used in sensitivity and precision evaluation
Control
Sample

Ground Truth Genome
Center

GVCF origin Notes

HG-001 GiaB BI DRAGEN 3.4.12 NA12878

HG-003 GiaB UW DRAGEN 3.4.12 Ashkenazi Trio
NA24149 - Father

HG-004 GiaB BI DRAGEN 3.4.12 Ashkenazi Trio
NA24143 - Mother

HG-005 GiaB BI DRAGEN 3.4.12 Han ancestry
NA24631- Son

Genome Center:
BI -- Broad Institute
UW -- University of Washington
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Appendix J: High quality site determination (srWGS)
In order to do relatedness and ancestry checks, we identified a corpus of sites that can be
called accurately in both our ancestry training set (HGDP+1KG) and our target data (All of Us
srWGS callset). We used a similar methodology that gnomAD used to determine high-quality
sites [11]:

1. Autosomal, bi-allelic single nucleotide variants (SNVs) only
2. Allele frequency > 0.1%
3. Call rate > 99%
4. LD-pruned with a cutoff of r2 = 0.1

Our aim was to assemble a set of independent sites where we can be confident of the accuracy.

We identified 150229 high-quality (HQ) sites in the v7 callset. These were HQ sites in both the
HGDP+1kg training VCF and the All of Us v7 callset. A sites-only VCF of the HQ sites is
available in the RW (access required).
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Appendix K: Relatedness (srWGS)
We used the Hail pc_relate function to determine the kinship score to report any pairs with a
kinship score over 0.1. This analysis was done with the srWGS SNP and Indel data and the
lrWGS SNP and Indel data. The kinship score is half of the fraction of the genetic material
shared (ranges from 0.0 - 0.5).

● Parent-child or siblings: 0.25
● Identical twins: 0.5

Please see the Hail pc_relate function [13] documentation for more information, including
interpretation.

We will determine the maximal independent set [57] for related samples to minimize the number
of samples that would need pruning. Using the HQ sites identified in Appendix J, researchers
can remove first and second degree relatives.

We estimated 19,374 related pairs and 15,376 samples in the maximal independent set for
kinship scores above 0.1. The sample pairs, with kinship score, and the set are available in the
RW (access required).
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Appendix L: Plots of the first principal component
against population outlier QC metrics
Figure L.1 contains the plots of the first principal component against metrics used for
determining sample population outliers in srWGS sample QC. Note that we use sixteen
principal components for determining which samples should be flagged for being outliers in a
metric. The blue line shows the linear regression fit in the first dimension (residuals are
calculated as the distance from this hyperplane). The failure count over these plots will sum
higher than the 551 flagged samples, since samples can get flagged for multiple criteria. Please
see the next page for Figure L.1.
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Figure L.1 -- Sample population outlier plots for eight metrics (see Population Outlier Flagging).
Each metric (y-axis) is plotted against the first (of sixteen) principal components (x-axis).
Outliers are identified by regressing out the principal components and determining if the residual
is over 8 MADs from the sample population.
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Appendix M: srWGS Structural Variant Pipeline
The GATK-SV pipeline was applied to detect SVs from srWGS data [21]. GATK-SV is an
ensemble method which applies multiple SV callers to increase sensitivity and leverages
different types of evidence to refine SV calls and remove false positives. The SV callers used for
this callset were Manta [23] and Wham [24] to leverage paired-end (PE) and split-read (SR)
evidence, MELT [25] to specifically target mobile elements, and GATK-gCNV [58] and cn.MOPS
[59] to detect large copy-number variants (CNVs) from read depth (RD) evidence. Following
candidate SV discovery by these algorithms, GATK-SV re-evaluates the PE, SR, RD, and
B-Allele Frequency (BAF) evidence for each variant from the raw reads to improve precision.
Each candidate SV is jointly genotyped in every sample in the cohort, and then SV signatures
are integrated to resolve complex variants involving more than one SV type. An overview of the
GATK-SV algorithms and evidence types can be found at [60], and details of the method can be
found in Collins et al 2020 [21]. Code and technical documentation can be found on GitHub
(https://github.com/broadinstitute/gatk-sv). This includes automated workflows written in
Workflow Definition Language (WDL) [61].

Figure 8 depicts the steps of the pipeline as it was run in AoU. Table M.1 provides further details
on the software versions and how the steps were run. The software versions vary from step to
step because the latest version of each workflow available at the time was used in order to
incorporate the latest improvements. The main pipeline modules were run as Terra workflows, in
which case the GitHub release version and entity to which the workflow was applied (sample,
arbitrary partition of samples, batch, cohort) is noted. Steps for which there was not an
established workflow, such as QC and batching, were performed in Jupyter notebooks in Terra
in Python.

Table M.1-- GATK-SV Pipeline Versions and Notes

Workflow/Step Name Version Used Entity Notes

Sample selection Notebook See Sample Selection

GatherSampleEvidence v0.21-beta Sample SV callers used: Manta, Wham, and
MELT. All 12,000 samples completed
this step, with a 0.74% initial failure rate.

EvidenceQC v0.21-beta Arbitrary
partition
of
samples

Run on arbitrary partitions of samples.

Single sample QC Notebook See Single Sample QC

Batching Notebook See Batching

TrainGCNV v0.23-beta Batch Batches of samples were created
according to the scheme described in
the main text under Batching
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GatherBatchEvidence v0.23-beta Batch Depth-based CNV callers used: GATK
g-CNV and cn.MOPS. gVCFs were
reblocked to resolve a minor formatting
issue prior to this step.

ClusterBatch v0.21-beta Batch Following this step, SV counts per
sample were visualized with
PlotSVCountsPerSample (v0.21-beta)
as a QC checkpoint. No strong outliers
were observed, so no samples were
removed.

GenerateBatchMetrics v0.21-beta Batch

FilterBatchSites v0.21-beta Batch

PlotSVCountsPerSample v0.21-beta Batch No SV count outliers observed.

FilterBatchSamples v0.21-beta Batch No outlier samples were removed at this
stage (nIQR cutoff = 10000).

MergeBatchSites v0.21-beta Cohort For cohort-level steps, data from all
samples across all batches was
merged.

GenotypeBatch v0.24-beta Batch

RegenotypeCNVs v0.24-beta Cohort

CombineBatches v0.24-beta Cohort

ResolveComplexVariants v0.24-beta Cohort

GenotypeComplexVariants v0.24.1-
beta

Cohort

CleanVcf v0.24-beta Cohort

Filtering and refinement Multiple steps Cohort See Joint Callset Refinement & QC.
Filtering and refinement was performed
in a series of workflows and notebooks.

AnnotateVcf In
development
(git commit
5265fec)

Cohort A developmental version of AnnotateVcf
was used for improved scaling

MainVcfQc v0.26.9-beta Cohort
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Appendix N: Overall precision and recall after SL
and NCR filtering
Table N.1 summarizes performance after SL and NCR filtering across SV classes. Overall
recall/precision were 0.820/0.940 in the training set and 0.817/0.920 in the test set with similar
performance observed across the spectrum of SV classes. These results indicate that the model
will generalize accurately to unseen data.

Table N.1 -- Genotype filtering performance after applying SL and NCR cutoffs

Filtering class Min size
(bp)

Max size
(bp)

SL
cutoff

Train Test

Recall Precision Recall Precision

Small DEL 50 500 -37 0.809 0.973 0.805 0.963

Medium DEL 500 10,000 -8 0.856 0.979 0.821 0.967

Large DEL 10,000 inf -60 0.997 0.975 NA* NA*

Small DUP 50 500 -74 0.840 0.870 0.864 0.813

Medium DUP 500 10,000 -47 0.598 0.815 0.712 0.770

Large DUP 10,000 inf -99 1.00 0.999 NA* NA*

INS 50 inf -45 0.813 0.936 0.813 0.907

INV 50 inf -36 0.949 0.989 0.763 0.961

BND** NA NA -48 NA NA NA NA

*Large DEL and DUP variants were tested in a separate analysis. The results will be reported in
the supplementary SV QC doc, Benchmarking and quality analyses on the All of Us v7 short
read structural variant calls, which can be found on the User Support Hub [1].
**BNDs lacked training data, so the SL cutoff for BNDs was set as the optimal value for all
training variants across SV types.
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Appendix O: Long Read Workflow Diagrams
The following figures summarize the workflows utilized to process the AoU Long Read samples.
A standard sample will be processed in the following sequence of workflows:

1) Preprocessing CCSed SMRT cells (HiFi reads extraction, demultiplex if applicable)
[Figure N.1]

2) Post-processing SMRT cells (alignment, QC controls at atomic unit level) [Figure N.2]
3) Whole Genome Variant Calling (data aggregation, de novo assembly, and variant
calling) [Figures N.3 and N.4]

The workflows are available as Workflow Definition Language (WDL) files in a public github
repository [62].

Figure N.1 Preprocessing CCSed SMRT cell. A workflow for preprocessing barcoded
(potentially multiplexed) SMRTCell. The cell is assumed to be CCSed on-instrument, and the
whole data folder is mirrored onto a cloud bucket.
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Figure N.2 Post-processing demultiplexed SMRTCell (CCS already performed). The various
IDs are assumed to be in-phase with the barcode names. Alignment to the two references
(grch38_noalt and T2Tv2.0) are done independently and only the grch38_noalt version goes
through the three sample SMRT cell (pre-sample-aggregation) QC processes.
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Figure N.3 Single sample whole genome variant calling. The workflow merges information from
each sample’s SMRT cell into a single BAM prior to variant calling. We run the entire workflow
separately for each reference.
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Figure N.4 HiFi FASTQ files for a sample are merged before sent for de novo assembly with
Hifiasm. The haplotype-resolved assembly is then evaluated with QUAST. This assembly will
then be used by PAV for calling variants.
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Appendix P: lrWGS analysis versions and
parameters
Table P.1 – lrWGS pipeline software versions and parameters

Software Version used Functionality Invocation parameters

extracthifi 1.0.0 Extracting HiFi
reads from CCS
bam.

extracthifi <unaligned.ccs.bam>
<unaligned.hifi.bam>

lima 2.6.0 SMRT cell
demultiplexing.

lima --dump-removed
--split-bam-named --hifi-preset
SYMMETRIC <unaligned.hifi.bam>
Sequel_16_barcodes_v3.fasta
<demux.bam>

pbmm2 1.4.0 HiFi reads
alignment.

pbmm2 align
<unaligned.hifi.bam><reference.fas
ta> --preset CCS --sample
<sample_name> --strip --sort
--unmapped

samtools 1.13 BAM aggregation
and conversion to
FASTQ.

Aggregation
samtools merge -p -c --no-PG -@ 2
--write-index -o <agg.bam>
<input.bam>[,<input.bam>,...]

Conversion
samtools fastq <input.bam>
<output.fastq>

Hifiasm 0.16.1 de novo assembly. Primary and alt assembly
hifiasm -o <output_prefix> -t
<cpu_cores_to_use> –primary
<input.fastq>[,<input.fastq>,...]

Haplotype resolved assembly
hifiasm -o <output_prefix> -t
<cpu_cores_to_use>
<input.fastq>[,<input.fastq>,...]

pbsv 2.6.0=h9ee0642
_0

Single sample SV
calling per
chromosome. After
this step,
chromosomes are
merged.

pbsv discover --tandem-repeats
<trf.bed> <aligned.bam>
<output.svsig.gz>

pbsv call –ccs <reference.fasta>
<input.svsig.gz> <output.vcf>

sniffles2 2.0.6 Single sample SV
calling

sniffles -i <input.bam> --minsvlen
50 --sample-id <sample_id> --vcf
<output.vcf> --snf <output.snf>
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pav
(the tool)

Branch aou with
hash fa43453
in repo
https://github.co
m/EichlerLab/pa
v

The specific pav
docker that we ran

pav
(WDL pipeline)

Single sample SV
and small variant
calling from
assembly

pav pipeline at
https://github.com/broadinstitute/
pav-wdl/tree/sh_more_resources_pet
e
It is currently in development. We ran the
pipeline in the state that is documented in
the git commit hash
5558ebdbd0be3f2eb722b10774a1e305a2
0fa569

Pepper Docker
kishwars/pepp
er_deepvarian
t:r0.4.1

Prepping BAM for
small variant
calling

run_pepper_margin_deepvariant \
call_variant \
-b <input.bam> \
-f <reference_fasta> \
-s <sample_name> \
-o <output_dir> \
-p <output_prefix> \
--phased_output \
--ccs

DeepVariant 1.3.0 Single sample SNP
and Indel variant
calling

/opt/deepvariant/bin/run_deepvaria
nt \

--model_type=PACBIO \
--ref=<reference_fasta> \

--reads=<pepper.prepared.input.bam
> \

--output_vcf=<output.vcf.gz> \

--output_gvcf=<output.g.vcf.gz> \
--use_hp_information

Margin Docker
kishwars/pepp
er_deepvarian
t:r0.4.1

Single sample SNP
and Indel phasing

margin phase \
<input.haplotagged.bam> \
<reference_fasta> \
<unphased_vcf> \

/opt/margin_dir/params/misc/allPar
ams.phase_vcf.json \

-M \
-o <output_dir>/<prefix>
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