
Benchmarking and quality analyses on
the All of Us v7 short read structural
variant calls

Introduction
Widespread benchmarking of structural variants (SVs) from short read whole genome
sequencing (srWGS) remains challenging, often due to lack of orthogonal data for comparison.
The All of Us cohort of samples with srWGS SV data is somewhat unique in the availability of
matched genomic datasets (i.e SNP arrays, srWGS SNPs and Indels, and long read genome
sequencing [lrWGS]). There also exists a number of intrinsic measures that can be used to
assess the technical quality of a dataset (e.g Hardy-Weinberg Equilibrium). Combining these
methods, we have a unique opportunity for a high-quality assessment of SV generated via
srWGS. Overall, we assess 7 measures of technical quality for the GATK-SV All of Us dataset,
described in the main QC report and this supplemental document.

In the Structural Variant QC Results section of the Genomic Research Data Quality Report [1],
we describe:

1. Variant counts (cohort-wide and per-sample) relative to gnomAD V2 [2] and the most
recent 1000 Genomes Project high-coverage srWGS callset [3]

2. Size distribution of SVs
3. Hardy-Weinberg equilibrium

In this benchmarking report, we additionally describe:
4. Linkage disequilibrium with srWGS SNPs and Indels
5. Patterns of evolutionary constraint
6. Benchmarking against long read sequencing data
7. Benchmarking against microarrays

In addition to these QC analyses, in this report we describe an analysis to benchmark the
performance of the DRAGEN 3.4.12 aligner compared to BWA for the discovery of SVs with
GATK-SV.



Comparisons to SNVs and Indels

Linkage disequilibrium with SNVs and Indels

Data and Methods

Given that most common SVs segregate on haplotypes with distinct sets of SNVs and Indels,
the presence of nearby SNVs in linkage disequilibrium (LD) with our SV calls is an indicator of
SV callset quality. To quantify this, we computed LD between the srWGS SV joint callset and
SNVs and indels from the srWGS SNP and Indel joint callset. We conducted this analysis in Hail
v0.2.107 in a Python notebook backed by a Spark 2.4.5 cluster. LD analyses were conducted
for the full cohort as well as subsets of the cohort that shared an assigned super-population
ancestry and contained at least 1,000 samples. The ancestry categories chosen under these
criteria were European (EUR; n=4,691), African (AFR; n=4,176), and admixed American (AMR;
n=1,430). We analyzed LD between all SVs with PASS filter status and SNPs/indels with PASS
filter status that had a minor allele frequency of at least 1% in either the full cohort or one of
these population subsets.

LD between the callsets was computed by first constructing two matrices:

1. An m x n matrix A where m is the number of SV calls after minor allele frequency
filtering, n is the number of samples in the cohort or population subset, and Aij is the
number of alternate alleles for sample j at SV site i.

2. An s x n matrix B where s is the number of SNPs and indels after minor allele frequency
filtering and Bij is the number of alternate alleles for sample j at SNP/indel site i.

We defined LD as the R2 of alternate allele dosage between each pair consisting of one SV site
and one SNP site [4]. We calculated R2 values by computing the matrix multiplication ABTafter
mean-centering and variance-standardizing each matrix, and then squaring each entry of the
resulting correlation matrix. We limited computation to SV/SNP pairs where the SNP was within
1 megabase of the SV by defining a window extending from 1 megabase (Mb) before the start
position (POS) of the SV to 1 Mb after the end position (END). Then, correlations were
computed between each SV and the SNPs located within the window using Hail’s block matrix
sparsification functionality. For each SV we identified the SNP with which the R2 value was
maximized. Given that previous LD analyses of SVs have shown that LD was much weaker for
SVs that occurred in repetitive sequence contexts [2], we further subdivided the results
according to the genomic context in which the SV occurs; we classified each SV as occurring in
segmental duplications (SD), simple repeats (SR), other repeat-masked sequence (RM), or the
unique sequence (US) outside of RM using methods from Zhao et al. 2021 [5].



Results
A violin plot of the maximum SNP or indel R2 for each SV appears in Figure 1, broken out by SV
type. The median R2 of the SNP in highest LD with each SV is over 0.7 for all SV types, except
duplications. Similar results hold when samples are subset into sub-populations (Figure 2).
There were no inversions annotated as belonging to simple repeats in the callset. The median
R2 value of the SNP in highest LD with each SV, broken into SV types and each genomic
sequence context, is given in Table 1. Stratifying by sequence context shows that duplications
within SR or SD sequence contexts have lower SNP LD than those in US or RM contexts
(Figure 3). It should be noted that biological factors, potentially including increased mutation
rates and recombination rates in repetitive sequence contexts such as simple repeats and
segmental duplications, as well as technical factors such as the difficulty of discovering SVs and
SNPs in those contexts, contribute to the expected lower LD scores identified in repetitive
regions of the genome.

Figure 1 – The distribution of maximum SNP-SV R2 values for each SV type. The SV types in
this analysis were: deletion (DEL), duplication (DUP), insertion (INS), complex event (CPX), and
inversion (INV).



Figure 2 – The distribution of maximum SNP-SV R2 values for each SV type, stratified by
predicted sample ancestry (ALL: all samples; EUR: European; AMR: Admixed American; AFR:
African).

Figure 3 – The distribution of maximum SNP-SV R2 values for each SV type, stratified by
genomic context. (SR: Simple Repeat; SD: Segmental Duplication; US: Unique Sequence; RM:
Repeatmasked sequence)

Table 1 – Median SNP-SV R2 value for each SV type, stratified by ancestry and genomic
context

SV type

Population Sequence
Context

DEL DUP INS CPX INV

ALL US 0.945 0.840 0.859 0.802 0.677

RM 0.945 0.799 0.820 0.847 0.974

SD 0.687 0.303 0.714 0.715 0.911

SR 0.573 0.146 0.376 0.295 N/A

AFR US 0.951 0.845 0.870 0.868 0.925



RM 0.947 0.825 0.834 0.856 0.967

SD 0.709 0.368 0.748 0.644 0.824

SR 0.534 0.175 0.349 0.481 N/A

EUR US 0.948 0.852 0.829 0.727 0.467

RM 0.940 0.737 0.773 0.836 0.943

SD 0.695 0.327 0.645 0.721 0.945

SR 0.557 0.081 0.297 0.253 N/A

AMR US 0.943 0.825 0.833 0.813 0.500

RM 0.938 0.765 0.788 0.854 0.958

SD 0.614 0.310 0.664 0.717 0.915

SR 0.562 0.101 0.328 0.319 N/A

Patterns of evolutionary constraint

Methods
Patterns of evolutionary constraint across genes have been previously examined in SNVs and
indels [6], and analyses in gnomAD V2 showed that SVs exhibit similar trends of gene-level
intolerance to variation [2]. To demonstrate that the v7 srWGS SV callset exhibits the same
fundamental biological signals, we replicated the methods in Collins et al. 2020 [2] to examine
trends of SV constraint in comparison to SNV constraint. Briefly, we estimated the depletion of
rare SVs per gene compared to the expected count of SVs per gene, using a negative binomial
regression model.

We subsetted the VCF to the maximal set of 11,306 unrelated samples in the v7 srWGS SV
callset, then computed the number of rare (AF <1%) SVs observed per gene for all autosomal
protein-coding genes, across four different classes of functional consequences. The functional
consequence categories used in this analysis were predicted loss-of-function (pLOF), copy gain
duplication (CG, in which an entire gene is duplicated), intragenic exonic duplication (IED, in
which intact exons are duplicated without disrupting coding sequence), and spanning inversion
(INV, in which an inversion spans an entire gene). Next, we trained the model to predict the
expected counts of SVs of different functional classes for each gene based on factors like gene
length, number of exons and introns, and overlap with segmental duplication regions. In order to
estimate the expected number of SVs per gene under neutral selection, the model was trained
on genes in the 5th-9th deciles for the loss-of-function observed/expected upper bound fraction



(LOEUF), a metric for constraint against rare pLOF SNVs [6]. We then applied the model to
estimate expected counts of SVs in each functional class across all autosomal protein-coding
genes.

We then binned genes by LOEUF percentile (resulting in 100 bins containing an average of 170
genes each) and compared the estimated expected counts of rare SVs of each functional class
for the genes in each bin to the observed counts. Finally, we used a two-sided Spearman’s rank
correlation test to assess the correspondence between SV and SNV constraint across all 100
bins of genes.

Since the LOEUF values for each gene were computed using hg19 data but the SVs were
annotated using the MANE Select Plus Clinical GTF (v0.95), we mapped gene symbols from
hg19 to hg38 (GENCODE release 33) using Supplementary Table 7 provided in Fu et al. 2022
[7].

Results
Figure 4 shows the results of the constraint analysis for rare coding SVs across four different
classes of SV functional consequences representing a spectrum of expected impact on the
protein. As expected, the depletion of rare pLOF SVs shows the strongest concordance with the
depletion of pLOF SNVs as measured by LOEUF (pLOF Spearman correlation test, ⍴=0.94,
P<10-100). There is also a strong relationship between CG SV constraint and LOEUF (CG
Spearman correlation test, ⍴=0.75, P<10-100) and a weaker but significant relationship between
IED SV constraint and LOEUF (IED Spearman correlation test, ⍴=0.64, P=4.85x10-13). There is
not a significant correlation between INV constraint and LOEUF (INV Spearman correlation test,
⍴=0.12, P<2.24x10-1). These results recapitulate the findings in Collins et al. 2020 [2] and show
that our findings reflect previously established patterns of evolutionary constraint.



Figure 4 – Comparing pLOF SNV constraint to binned SV constraint in four different SV
functional classes: A) predicted loss-of-function (pLOF), B) copy gain duplications (CG), C)
intragenic exonic duplications (IED), and D) inversions that span an entire gene (INV). Points
represent binned observed vs. expected SV count ratios compared to the LOEUF percentile
from SNVs. Solid lines represent 21-point rolling means. The results of the two-sided Spearman
correlation test (the correlation ⍴ and the P-value) are superimposed on each panel.



Comparisons to orthogonal data types

Benchmarking against long-read PacBio sequencing

Data and methods
We evaluated passing non-reference SV genotypes based on evidence derived from lrWGS.
Long read SV calls using existing algorithms are ideal for confirmation of SV events with
accurate breakpoint resolution, but are not sensitive to large insertions and inversions near the
lrWGS read size nor to large copy number variants (CNV) that must be detected by read depth
signatures. Read depth signatures are used extensively in the GATK-SV short-read pipeline but
not in existing lrWGS algorithms. Because of this reduced sensitivity of lrWGS SV calling to
large SVs, variants larger than 5 kilobases (kb) were excluded from this analysis.

We performed this analysis on a subset of 67 samples with matched lrWGS data that were held
out from training of the GQ filtering model used for refinement of the SV callset (see srWGS SV
Genotype Filter section of the Genomic Research Data Quality Report [1]). For each sample,
passing non-reference genotypes for eligible variants (SV type DEL, DUP, INS, or INV, with
PASS filter status, below 5 kb in length) were assessed against lrWGS using the lrWGS
validation tool VaPoR [8] and their overlap with SV calls from lrWGS data from the tools PAV [9],
PBSV [10], and sniffles [11]. Duplications present a challenge to overlap-based methods of
variant matching, as they can be called either as INS or DUP types, with INS calls either at the
5’ or 3’ end of the duplicated sequence. In order to avoid such complications with variant
representation, the evaluated calls were grouped into three main classes: gains (DUP and INS),
losses (DEL), and inversions prior to variant matching. srWGS variants were matched with
lrWGS variants of the same comparison class by requiring 10% reciprocal overlap and 50% size
similarity. This analysis was performed using the GATK SVConcordance tool [12].

Results
The validation callset generated by GATK-SV included 494,147 total non-reference calls
comprising 40,668 unique DEL, DUP, INS, and INV variants. These calls were strongly supported
by lrWGS, with 445,859 (90%) of the PASS genotypes confirmed by at least one lrWGS tool.
Figure 5 shows the distributions of support from lrWGS for gain and loss SVs, and Figure 6
shows them for inversions. For each intersection, the number of calls is shown with variant size
and GQ distributions. Note that the GQ recalibration model was trained on a set of independent
samples using lrWGS support criteria. Therefore, a higher GQ reflects that the call was similar
to calls in the training set with support from VaPoR and at least one of the three lrWGS SV
algorithms (see srWGS SV Genotype Filter section of the Genomic Research Data Quality
Report [1]).

There was a high degree of consensus among the lrWGS callers, with only 35,672 (8.0% of
confirmed) srWGS SV calls supported by just one lrWGS SV caller and 372,636 (84%)



supported by at least three. Calls with no lrWGS support had overall lower genotype quality
(GQ) scores (median 43) compared to supported calls (median 89), which is consistent with
expectations. Notably, PBSV was the most consistent with srWGS SV calls from GATK-SV,
supporting 428,333 (96% of confirmed) srWGS calls with a median GQ of 89, compared to the
remaining 17,526 lrWGS supported calls with a median GQ of 57.

The distribution of calls produced by the three non-depth based srWGS SV calling tools used by
GATK-SV (Manta [13], Wham [14], and MELT [15]) and the fraction of calls with lrWGS support
for each is shown in Figure 5B. Overall, Manta produced 444,139 (90%) of passing calls, 93%
of which were supported by at least one lrWGS SV discovery method. In addition, MELT
contributed 114,827 (23%) of the calls with 85% lrWGS support. Note that while only 69% of
calls unique to MELT validated with lrWGS in the final call set, applying a more stringent GQ
filter cutoff of 35 for mobile element INS events results in a 91% validation rate overall for MELT
while losing less than 0.6% sensitivity to calls under 5 kb. While Wham made only 261 unique
calls, it contributed 42,391 (8.6%) in total with 86% lrWGS support. Similar to gain and loss SVs,
inversions exhibited a high degree of support from lrWGS, with 524 of 542 (97%) supported by
at least one tool and 377 (70%) supported by three (Figure 6).

Figure 5 – Evaluation of passing srWGS gain and loss calls under 5 kb against lrWGS tools. (A)
Distribution of lrWGS tool support for gain and loss SV classes. Filled circles indicate
combinations of tools that support the call counts in each column (combinations with fewer than



1,000 total calls are omitted for clarity). Violin plots of genotype quality and log10 of variant length
distributions are superposed over each combination. Total supported calls for each lrWGS tool
are plotted at the bottom-left. (B) Distribution of srWGS tool support. Top panel shows the
fraction of calls with support from at least 1 lrWGS tool.

Figure 6 – Evaluation of passing srWGS inversion calls under 5 kb against lrWGS tools. Data is
plotted as in Figure 5 for gain and loss calls but with all non-empty combinations shown.

Benchmarking large CNVs against microarrays

Data and Methods

We evaluated all deletions and duplications greater than 10 kb in length on the autosomes using
array intensity data from the LRR field of the array VCFs (available on the Researcher
Workbench and described in ‘How the All of Us Genomic Data are Organized’). To conduct this
evaluation we used the GenomeSTRiP IntensityRankSumAnnotator (IRS) tool [16,17]. The IRS
tool compares the array probe intensity values between samples predicted to carry the CNV and
those predicted to be non-carriers (according to genotypes in the SV VCF), using all probes that
are within the CNV interval. Using a non-parametric test, the IRS tool assigns a p-value to each

https://support.researchallofus.org/hc/en-us/articles/4614687617556-How-the-All-of-Us-Genomic-data-are-organized


CNV which indicates if the CNV genotypes are supported by the intensity data. In addition to
using site-level p-values, the authors of the test recommend using IRS to calculate a callset
level false discovery rate (FDR) by computing , where M is the number of sites where2 *  𝑀

𝑁

the IRS p-value is greater than 0.5 and N is the total number of sites.

We ran the IRS test on all samples at each site. The IRS test requires that an intensity value be
present for all samples. Therefore, if a sample had a missing data value for one or more of the
probes covered by the CNV interval, we set the intensity value to a random value such that the
rank of the inserted value within the cohort would be uniformly distributed. This was achieved by
choosing another sample at random from the set of samples with non-missing values for that
probe and setting the missing sample’s intensity value to that of the randomly chosen sample.
The substitution of missing data points with randomly chosen values was necessary for testing
the callset against the entire cohort, but could inflate the FDR estimates provided by the IRS
test.

Results

After removing 1,587 duplication sites which did not overlap any array probes and could not be
tested, 29,133 autosomal CNVs of size 10kb or greater were evaluated using this test, including
16,867 deletions and 12,265 duplications. 67 out of 16,867 deletions had an IRS p-value greater
than 0.5, resulting in an estimated FDR of 0.79% for all deletions tested using the callset-wide
evaluation procedure described above. 96.7% of deletions were validated using a more
stringent p-value cutoff of 0.01, which was the threshold used to select sites for molecular
validation based on IRS results in a previous study [16]. The results for deletions in different size
ranges are shown in Table 2.

Table 2 – Array validation results for deletions in different size ranges

10kb-20kb 20-50kb 50-100kb 100kb-1Mb >1Mb

Sites 7753 4620 2136 2188 62

Estimated
Callset FDR

0.85% 0.74% 0.66% 0.37% 0%

P-value < 0.01 7328 (94.5%) 4545 (98.4%) 2121 (99.3%) 2173 (99.3%) 62 (100%)

Out of the duplications evaluated, 89 had a p-value over 0.5, resulting in an estimated callset
FDR of 1.45%. 94.1% of duplications validated at the 0.01 p-value threshold. Duplication results
by size range are shown in Table 3. We note that 6% (221 / 3591) of duplications (221 / 3591)
and deletions (411 / 7342) between 10kb and 20kb span only one probe, reducing the statistical
power of the IRS test to validate these events at the p-value < 0.01 level. Overall, these results
show that large CNVs in this callset were strongly supported by microarrays, with a very low
estimated FDR for both large deletions and large duplications.



Table 3 – Array validation results for duplications in different size ranges

10kb-20kb 20-50kb 50-100kb 100kb-1Mb >1Mb

Sites 3591 3525 2098 2820 138

Estimated
Callset FDR

2.28% 1.36% 1.14% 0.57% 0%

P-value < 0.01 3094 (86.2%) 3501 (99.3%) 2067 (98.5%) 2801 (99.3%) 138 (100%)

Comparing the BWA and DRAGEN aligners for
structural variant calling

Background
The Burrows-Wheeler Aligner (BWA) [18] has remained the field standard for sequence
alignment over the past decade and has been the tool of choice for most large-scale
sequencing studies to date (e.g. gnomAD, TopMED) [19,20]. Recently, Illumina developed the
DRAGEN Aligner which has shown a slight but noticeable improvement for short variant (SNV,
indel) calling when compared to BWA [21]. An equivalent comparison looking at DRAGEN vs.
BWA for structural variants has yet to be performed and is critical to ensure we can accurately
detect SVs using the DRAGEN aligner. In the following analysis we compare 161 samples from
the 1000 Genomes Project (1KGP) [3] that have been aligned with both BWA-MEM 0.7.15 and
DRAGEN 3.4.12. We included the 23 1KGP samples with matched long read Pacific
Biosciences (PacBio) sequences and SV calls [9] to allow for benchmarking against orthogonal
data. We then apply GATK-SV on each aligned file and compare the results across aligners.

Data and Methods

Experimental setup
The 161 1KGP samples were aligned with BWA-MEM 0.7.15 as described in the recent 1KGP
study [3]. We realigned these sequences with DRAGEN 3.4.12 using the All of Us DRAGEN
3.4.12 GRCh38 specifications. We then applied GATK-SV on both alignments using identical
settings on Terra. See Appendix A for additional technical details. Downstream filtering and
refinement steps were not applied because we did not have equivalent methods available for
BWA and DRAGEN SVs. In particular, the genotype filtering method used for the All of Us v7
srWGS SV callset was trained and applied on DRAGEN-aligned data and may perform
differently on BWA-aligned data.

https://paperpile.com/c/2c62eR/YSRe


Comparison methods
SVs from data aligned with DRAGEN (DRAGEN SVs) and BWA (BWA SVs) were compared
using custom scripts. We considered a pair of SVs from different aligners to be overlapping
events if they shared the same SV type and met one of the following criteria:

1. Deletions and duplications under 5 kb sharing a minimum of 10% reciprocal overlap
2. Deletions and duplications over 5 kb sharing a minimum of 50% reciprocal overlap
3. Insertions having breakpoints within 100 base pairs (bp) of each other

In addition, we allowed SVs of different SV types to match under the following circumstances:
4. Insertions and duplications could match if their breakpoints were within 100 bp
5. Inversions and complex SVs could match if the intervals covered by the SV events had

at least 50% reciprocal overlap

Results

Comparison of SV sites
Decent overlap was observed between SV sites aligned with BWA and DRAGEN: 88.8% of
DRAGEN SVs overlapped BWA SVs and 87.5% of BWA SVs overlapped DRAGEN SVs (Figure
7A). The concordance, i.e. the proportion of SVs that were shared by SVs aligned with both
methods, was not uniform across the genome; SVs in highly repetitive SD and SR regions, the
genomic regions that are well documented to have limitations for short reads to align and detect
SVs [22,23], had lower overlap (75-89%) than RM and US (94-97%, Figure 7B). Additionally, the
overlap patterns differed across SV types: duplications and complex SVs, which are more
challenging for current short read algorithms than other SV types [24], demonstrated lower
concordance between aligners than deletions, insertions, and inversions (Figure 7C-D) .



Figure 7 – Overlap between DRAGEN and BWA SVs. A. Overlap of SV sites between BWA and
DRAGEN callsets. B. Overlap of SVs in different genomic contexts between BWA and DRAGEN
callsets. C-D. Overlap of each SV type between BWA and DRAGEN callsets in C) less repetitive
RM and US regions and D) highly repetitive SD and SR sequences.

Comparison of SV genotypes
The 23 samples with matched lrWGS data were used for genotype-level comparisons between
the BWA and DRAGEN SVs. When comparing the same sample between the two callsets,
86.8% of DRAGEN SV genotypes match a BWA SV genotype and 83.7% of BWA SV genotypes
match a DRAGEN SV genotype. Consistent with site-level observations, SVs in the highly
repetitive SD and SR sequences had lower overlap between aligners than RM and US
sequences, and duplications had lower overlap than deletions and insertions (Figure 8A). When
restricting to SVs that were validated in matched lrWGS data by VaPoR [8] or overlap with
lrWGS SV calls [9], higher overlap was observed between the aligners. This increase is
consistent across genomic contexts and SV types (Figure 8B). This suggests high-confidence
SVs that validate with lrWGS data are more likely to be found from both aligners. As expected,
we observed higher concordance between aligners when an SV was discovered by multiple
algorithms rather than a single algorithm (Figure 8C), or was supported by multiple types of
alignment evidence rather than a single evidence type (Figure 8D).



Figure 8. Characteristics of the overlap between DRAGEN and BWA SVs. A-B. Overlap
between BWA and DRAGEN callsets of A) SV genotypes in the same genome and B) SV
genotypes in the same genome that are supported by lrWGS data, and the breakdown of
overlap by different genomic context and SV type. C-D. Proportion of DRAGEN and BWA SVs in
each individual genome that are overlapped by the other aligner broken down by C) GATK-SV
component algorithms and D) alignment evidence.



Discussion
Previous studies have indicated that the srWGS alignments are usually confounded by the
complexity of genomic sequences, so SV discovery in the complex SD and SR sequences is
more challenging and prone to higher false positive rates [5,25]. The lower concordance
between DRAGEN and BWA SVs in SD and SR regions indicate a positive correlation between
the concordance of the aligners and the quality of SVs, which is further supported by the
observations that SVs with PacBio support shared higher concordance between aligners. It
should be noted that the SVs included in this comparison were the direct output from GATK-SV
pipeline, which maximizes sensitivity, and downstream filtering and refinements to improve
precision were not applied in order to preserve the comparability of the BWA and DRAGEN
callsets. Therefore, the discordance between aligners is likely a result of both technical
alignment differences and false positive SVs. In our next round of benchmarking, we plan to
evaluate the DRAGEN 3.7.8 aligner, enlarge the sample set to include all 3,202 1KGP samples,
and perform SV filtering and refinement.

References
[1] “All of Us Genomic Quality Report” All of Us Research Program,
https://support.researchallofus.org/hc/en-us/articles/4617899955092-All-of-Us-Beta-Release-Ge
nomic-Quality-Report-
[2] Collins, R.L., Brand, H., Karczewski, K.J. et al. A structural variation reference for medical
and population genetics. Nature 581, 444-451 (2020).
https://doi.org/10.1038/s41586-020-2287-8
[3] Byrska-Bishop, Marta et al. “High-coverage whole-genome sequencing of the expanded
1000 Genomes Project cohort including 602 trios.” Cell vol. 185,18 (2022): 3426-3440.e19.
doi:10.1016/j.cell.2022.08.004
[4] Hill, W G, and A Robertson. “Linkage disequilibrium in finite populations.” TAG. Theoretical
and applied genetics. Theoretische und angewandte Genetik vol. 38,6 (1968): 226-31.
doi:10.1007/BF01245622
[5] Zhao, Xuefang et al. “Expectations and blind spots for structural variation detection from
long-read assemblies and short-read genome sequencing technologies.” American journal of
human genetics vol. 108,5 (2021): 919-928. doi:10.1016/j.ajhg.2021.03.014
[6] Karczewski, K.J., Francioli, L.C., Tiao, G. et al. The mutational constraint spectrum
quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
https://doi.org/10.1038/s41586-020-2308-7
[7] Fu, Jack M et al. “Rare coding variation provides insight into the genetic architecture and
phenotypic context of autism.” Nature genetics vol. 54,9 (2022): 1320-1331.
doi:10.1038/s41588-022-01104-0
[8] Zhao X, Weber AM, Mills RE. A recurrence-based approach for validating structural variation
using long-read sequencing technology. Gigascience. 2017 Aug 1;6(8):1-9. doi:
10.1093/gigascience/gix061. PMID: 28873962; PMCID: PMC5737365.

https://doi.org/10.1038/s41586-020-2287-8
https://doi.org/10.1038/s41586-020-2308-7


[9] P. Ebert, P. A. Audano, Q. Zhu et al., Haplotype-resolved diverse human genomes and
integrated analysis of structural variation. Science 372, eabf7117 (2021).
[10] PacBio structural variant calling and analysis tools (PBSV), Retrieved March 3, 2023,
from https://github.com/PacificBiosciences/pbsv.
[11] Sedlazeck FJ, Rescheneder P, Smolka M, et al. Accurate detection of complex structural
variations using single-molecule sequencing. Nat Methods. 2018 Jun;15(6):461-468. doi:
10.1038/s41592-018-0001-7. Epub 2018 Apr 30. PMID: 29713083; PMCID: PMC5990442.
[12] GATK Team “SVConcordance (Beta) – GATK.” GATK, 20 Mar. 2023,
https://gatk.broadinstitute.org/hc/en-us/articles/13832773767963-SVConcordance-BETA-.
[13] Chen, X. et al. (2016) Manta: rapid detection of structural variants and indels for germline
and cancer sequencing applications. Bioinformatics, 32, 1220-1222.
doi:10.1093/bioinformatics/btv710
[14] Kronenberg ZN, Osborne EJ, Cone KR, Kennedy BJ, Domyan ET, Shapiro MD, et al.
(2015) Wham: Identifying Structural Variants of Biological Consequence. PLoS Comput Biol
11(12): e1004572. https://doi.org/10.1371/journal.pcbi.1004572
[15] Gardner, E. J., Lam, V. K., Harris, D. N., Chuang, N. T., Scott, E. C., Mills, R. E., Pittard, W.
S., 1000 Genomes Project Consortium & Devine, S. E. The Mobile Element Locator Tool
(MELT): Population-scale mobile element discovery and biology. Genome Research, 2017.
27(11): p. 1916-1929.
[16] Mills, Ryan E et al. Mapping copy number variation by population-scale genome
sequencing. Nature vol. 470,7332 (2011): 59-65. doi:10.1038/nature09708
[17] Handsaker, R., Van Doren, V., Berman, J. et al. Large multiallelic copy number variations in
humans. Nat Genet 47, 296-303 (2015). https://doi.org/10.1038/ng.3200
[18] Li, Heng, and Richard Durbin. “Fast and accurate short read alignment with
Burrows-Wheeler transform.” Bioinformatics (Oxford, England) vol. 25,14 (2009): 1754-60.
doi:10.1093/bioinformatics/btp324
[19] Karczewski, Konrad J et al. “The mutational constraint spectrum quantified from variation in
141,456 humans.” Nature vol. 581,7809 (2020): 434-443. doi:10.1038/s41586-020-2308-7
[20] Taliun, Daniel et al. “Sequencing of 53,831 diverse genomes from the NHLBI TOPMed
Program.” Nature vol. 590,7845 (2021): 290-299. doi:10.1038/s41586-021-03205-y
[21] Caetano-Anolles, Derek. "Introducing DRAGMAP, the New Genome Mapper in
DRAGEN-GATK." GATK,
gatk.broadinstitute.org/hc/en-us/articles/4410953761563-Introducing-DRAGMAP-the-new-geno
me-mapper-in-DRAGEN-GATK.
[22] Kosugi, Shunichi et al. “Comprehensive evaluation of structural variation detection
algorithms for whole genome sequencing.” Genome biology vol. 20,1 117. 3 Jun. 2019,
doi:10.1186/s13059-019-1720-5
[23] Tattini, Lorenzo et al. “Detection of Genomic Structural Variants from Next-Generation
Sequencing Data.” Frontiers in bioengineering and biotechnology vol. 3 92. 25 Jun. 2015,
doi:10.3389/fbioe.2015.00092
[24] Collins, Ryan L et al. “Defining the diverse spectrum of inversions, complex structural
variation, and chromothripsis in the morbid human genome.” Genome biology vol. 18,1 36. 6
Mar. 2017, doi:10.1186/s13059-017-1158-6

https://github.com/PacificBiosciences/pbsv
https://gatk.broadinstitute.org/hc/en-us/profiles/388875408552-GATK-Team
https://doi.org/10.1093/bioinformatics/btv710
https://doi.org/10.1371/journal.pcbi.1004572
https://doi.org/10.1038/nature09708
https://doi.org/10.1038/ng.3200


[25] Cameron, Daniel L et al. “Comprehensive evaluation and characterisation of short read
general-purpose structural variant calling software.” Nature communications vol. 10,1 3240. 19
Jul. 2019, doi:10.1038/s41467-019-11146-4

Appendix A: Additional technical details for the
DRAGEN 3.4.12 evaluation
We compared the performance of the BWA-MEM 0.7.15 (referred to as BWA) and DRAGEN
3.4.12 (referred to as DRAGEN) aligners for detecting structural variants using the GATK SV
pipeline. The experimental setup involved preparing the raw data, creating Terra workspaces for
each dataset, running the GATK-SV variant calling pipeline for each dataset, and analyzing the
resulting variant calls. This setup enabled us to compare the performance of these two aligners
and assess any differences in the variant calling results.

Sample Selection
161 samples were selected from the 3,202 NYGC high-coverage 1000 Genomes samples [3].
23 samples were selected because they had matched PacBio lrWGS data [9]. The remaining
138 samples are part of trios, including 8 trios containing at least one sample with lrWGS data.
Selecting samples with either matched lrWGS data or close family members provided options
for validating SV calls by comparisons to lrWGS data or by examining Mendelian violation rates.

Realignment with DRAGEN 3.4.12
The publicly available BWA-aligned CRAM files, CRAM index files, and gVCF files were used
for the BWA inputs [3]. To generate the DRAGEN inputs, the BWA-aligned CRAM files were first
sorted and converted to FASTQ. Then DRAGEN 3.4.12 was used to align the FASTQ and
produce a gVCF, following the All of Us DRAGEN 3.4.12 GRCh38 specifications. This process
was performed in Amazon Web Services (AWS) using AWS Batch. Table A.1 shows these steps
in more detail.

Table A.1 -- Steps to realign 1KGP CRAMs with DRAGEN 3.4.12

Step Tool Version
Used

Command

Sort CRAM files Samtools 1.12 samtools sort -n --reference
GRCh38_full_analysis_set_plus_decoy_hla.fa -o
{output} {input}

Convert CRAM to FASTQ Samtools 1.12 samtools fastq --reference
GRCh38_full_analysis_set_plus_decoy_hla.fa -1
{output_r1} -2 {output_r2} {input}



Compress FASTQ gzip 1.3.12 gzip {input}

Produce DRAGEN 3.4.12
CRAM and gVCF

DRAGEN 3.4.12 parameters are identical to the All of Us DRAGEN
3.4.12 GRCh38 specifications

Callset generation with GATK-SV
The GATK-SV pipeline for structural variant calling was applied to the 161 samples in parallel
from the BWA-aligned inputs and the DRAGEN-aligned inputs. The exact same steps were
followed and the exact same version of the GATK-SV code was used for each set of inputs so
that the only difference between the production of the two callsets was the aligner.

Table A.2 shows the steps of the GATK-SV pipeline that were applied for this analysis, available
in the GATK-SV GitHub repository (https://github.com/broadinstitute/gatk-sv). The table also lists
the GitHub release version that was used for each of the steps. The versions vary between
steps because the latest version of each workflow available at the time was used. Some of the
workflow names and versions differ from those used for the v7 srWGS SV release [1] because
this analysis was completed earlier than the main callset.

Table A.2-- GATK-SV Pipeline Versions Used for Evaluating DRAGEN against BWA

Workflow/Step Name Version Used

GatherSampleEvidence v0.21-beta

EvidenceQC v0.21-beta

TrainGCNV v0.23-beta

GatherBatchEvidence v0.23-beta

ClusterBatch v0.21-beta

GenerateBatchMetrics v0.21-beta

FilterBatchSites v0.21-beta

PlotSVCountsPerSample v0.21-beta

FilterBatchSamples v0.21-beta

MergeBatchSites v0.21-beta

GenotypeBatch v0.21-beta

RegenotypeCNVs v0.21-beta

MakeCohortVcf v0.22-beta

AnnotateVcf v0.23-beta

https://github.com/broadinstitute/gatk-sv



